Adaptive Fista

In this paper we propose an adaptively extrapolated proximal gradient method, which is based on the accelerated proximal gradient method (also known as FISTA), however we locally optimize the extrapolation parameter by carrying out an exact (or inexact) line search. It turns out that in some situations, the proposed algorithm is equivalent to a class … Read more

An Accelerated Communication-Efficient Primal-Dual Optimization Framework for Structured Machine Learning

Distributed optimization algorithms are essential for training machine learning models on very large-scale datasets. However, they often suffer from communication bottlenecks. Confronting this issue, a communication-efficient primal-dual coordinate ascent framework (CoCoA) and its improved variant CoCoA+ have been proposed, achieving a convergence rate of $\mathcal{O}(1/t)$ for solving empirical risk minimization problems with Lipschitz continuous losses. … Read more

On the use of third-order models with fourth-order regularization for unconstrained optimization

In a recent paper, it was shown that, for the smooth unconstrained optimization problem, worst-case evaluation complexity $O(\epsilon^{-(p+1)/p})$ may be obtained by means of algorithms that employ sequential approximate minimizations of p-th order Taylor models plus (p + 1)-th order regularization terms. The aforementioned result, which assumes Lipschitz continuity of the p-th partial derivatives, generalizes … Read more

Meta-Modeling to Assess the Possible Future of Paris Agreement

In the meta-modeling approach one builds a numerically tractable dynamic optimization or game model in which the parameters are identified through statistical emulation of a detailed large scale numerical simulation model. In this paper we show how this approach can be used to assess the economic impacts of possible climate policies compatible with the Paris … Read more

Two-stage stochastic programming model for routing multiple drones with fuel constraints

Uses of drones and unmanned vehicles (UAVs) in ground or aerial are increasing in both civil and military applications. This paper develops a two-stage stochastic optimization model with a recourse for a multiple drone-routing problem with fuel constraints under uncertainty for the travel between any pair of targets/refueling-sites/depot. We are given a set of n … Read more

DASC: a Decomposition Algorithm for multistage stochastic programs with Strongly Convex cost functions

We introduce DASC, a decomposition method akin to Stochastic Dual Dynamic Programming (SDDP) which solves some multistage stochastic optimization problems having strongly convex cost functions. Similarly to SDDP, DASC approximates cost-to-go functions by a maximum of lower bounding functions called cuts. However, contrary to SDDP, the cuts computed with DASC are quadratic functions. We also … Read more

The nonsmooth landscape of phase retrieval

We consider a popular nonsmooth formulation of the real phase retrieval problem. We show that under standard statistical assumptions, a simple subgradient method converges linearly when initialized within a constant relative distance of an optimal solution. Seeking to understand the distribution of the stationary points of the problem, we complete the paper by proving that … Read more

A One-Parameter Family of Middle Proximal ADMM for Constrained Separable Convex Optimization

This work is devoted to studying a family of Middle Proximal Alternating Direction Method of Multipliers (MP-ADM) for solving multi-block constrained separable convex optimization. Such one-parameter family of MP-ADM combines both Jacobian and Gauss-Seidel types of alternating direction method, and proximal point techniques are only applied to the middle subproblems to promote the convergence. We … Read more

Computational Aspects of Bayesian Solution Estimators in Stochastic Optimization

We study a class of stochastic programs where some of the elements in the objective function are random, and their probability distribution has unknown parameters. The goal is to find a good estimate for the optimal solution of the stochastic program using data sampled from the distribution of the random elements. We investigate two common … Read more

The extensions of Yuan’s lemma and applications in S-lemma

In this paper we extend a lemma due to Yuan from several aspects. A new proof of Yuan’s lemma is given. A rank-one decomposition of positive semidefinite matrix is further developed. With the extended rank-one de- composition results, we generalize the Yuan’s lemma to general quadratic function systems, interval quadratic function systems and quadratic matrix … Read more