New Valid Inequalities for the Fixed-Charge and Single-Node Flow Polytopes

The most effective software packages for solving mixed 0-1 linear programs use strong valid linear inequalities derived from polyhedral theory. We introduce a new procedure which enables one to take known valid inequalities for the knapsack polytope, and convert them into valid inequalities for the fixed-charge and single-node flow polytopes. The resulting inequalities are very … Read more

Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems

We understand linear convergence of some first-order methods such as the proximal gradient method (PGM), the proximal alternating linearized minimization (PALM) algorithm and the randomized block coordinate proximal gradient method (R-BCPGM) for minimizing the sum of a smooth convex function and a nonsmooth convex function from a variational analysis perspective. We introduce a new analytic … Read more

PyMOSO: Software for Multi-Objective Simulation Optimization with R-PERLE and R-MinRLE

We present the PyMOSO software package for (1) solving multi-objective simulation optimization (MOSO) problems on integer lattices, and (2) implementing and testing new simulation optimization (SO) algorithms. First, for solving MOSO problems on integer lattices, PyMOSO implements R-PERLE, a state-of-the-art algorithm for two objectives, and R-MinRLE, a competitive benchmark algorithm for three or more objectives. … Read more

Global Convergence in Deep Learning with Variable Splitting via the Kurdyka-{\L}ojasiewicz Property

Deep learning has recently attracted a significant amount of attention due to its great empirical success. However, the effectiveness in training deep neural networks (DNNs) remains a mystery in the associated nonconvex optimizations. In this paper, we aim to provide some theoretical understanding on such optimization problems. In particular, the Kurdyka-{\L}ojasiewicz (KL) property is established … Read more

Exploiting Partial Correlations in Distributionally Robust Optimization

In this paper, we identify partial correlation information structures that allow for simpler reformulations in evaluating the maximum expected value of mixed integer linear programs with random objective coefficients. To this end, assuming only the knowledge of the mean and the covariance matrix entries restricted to block-diagonal patterns, we develop a reduced semidefinite programming formulation, … Read more

Understanding the Acceleration Phenomenon via High-Resolution Differential Equations

Gradient-based optimization algorithms can be studied from the perspective of limiting or- dinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distin- guish between two fundamentally different algorithms—Nesterov’s accelerated gradient method for strongly convex functions (NAG-SC) and Polyak’s heavy-ball method—we study an alter- native limiting process that yields high-resolution ODEs. We … Read more

A convex integer programming approach for optimal sparse PCA

Principal component analysis (PCA) is one of the most widely used dimensionality reduction tools in scientific data analysis. The PCA direction, given by the leading eigenvector of a covariance matrix, is a linear combination of all features with nonzero loadings—this impedes interpretability. Sparse principal component analysis (SPCA) is a framework that enhances interpretability by incorporating … Read more

On the Convergence to Stationary Points of Deterministic and Randomized Feasible Descent Directions Methods

We study the class of nonsmooth nonconvex problems in which the objective is to minimize the difference between a continuously differentiable function (possibly nonconvex) and a convex (possibly nonsmooth) function over a convex polytope. This general class contains many types of problems, including difference of convex functions (DC) problems, and as such, can be used … Read more

Convergence Rate Analysis of a Stochastic Trust Region Method via Supermartingales

We propose a novel framework for analyzing convergence rates of stochastic optimization algorithms with adaptive step sizes. This framework is based on analysing properties of an underlying generic stochastic process, in particular by deriving a bound on the expected stopping time of this process. We utilise this framework to analyse the bounds on expected global … Read more

Condition Number Analysis of Logistic Regression, and its Implications for Standard First-Order Solution Methods

Logistic regression is one of the most popular methods in binary classification, wherein estimation of model parameters is carried out by solving the maximum likelihood (ML) optimization problem, and the ML estimator is defined to be the optimal solution of this problem. It is well known that the ML estimator exists when the data is … Read more