A computational study of global optimization solvers on two trust region subproblems

One of the relevant research topics to which Chris Floudas contributed was quadratically constrained quadratic programming (QCQP). This paper considers one of the simplest hard cases of QCQP, the two trust region subproblem (TTRS). In this case, one needs to minimize a quadratic function constrained by the intersection of two ellipsoids. The Lagrangian dual of … Read more

On Finding Stable and Efficient Solutions for the Team Formation Problem

The assignment of personnel to teams is a fundamental and ubiquitous managerial function, typically involving several objectives and a variety of idiosyncratic practical constraints. Despite the prevalence of this task in practice, the process is seldom approached as a precise optimization problem over the reported preferences of all agents. This is due in part to … Read more

Convex optimization under combinatorial sparsity constraints

We present a heuristic approach for convex optimization problems containing sparsity constraints. The latter can be cardinality constraints, but our approach also covers more complex constraints on the support of the solution. For the special case that the support is required to belong to a matroid, we propose an exchange heuristic adapting the support in … Read more

Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers

We present DFO-LS, a software package for derivative-free optimization (DFO) for nonlinear Least-Squares (LS) problems, with optional bound constraints. Inspired by the Gauss-Newton method, DFO-LS constructs simplified linear regression models for the residuals. DFO-LS allows flexible initialization for expensive problems, whereby it can begin making progress from as few as two objective evaluations. Numerical results … Read more

A barrier-type method for multiobjective optimization

For solving constrained multicriteria problems, we introduce the multiobjective barrier method (MBM), which extends the scalar-valued internal penalty method. This multiobjective version of the classical method also requires a penalty barrier for the feasible set and a sequence of nonnegative penalty parameters. Differently from the single-valued procedure, MBM is implemented by means of an auxiliary … Read more

Derivative-Free Superiorization With Component-Wise Perturbations

Superiorization reduces, not necessarily minimizes, the value of a target function while seeking constraints-compatibility. This is done by taking a solely feasibility-seeking algorithm, analyzing its perturbations resilience, and proactively perturbing its iterates accordingly to steer them toward a feasible point with reduced value of the target function. When the perturbation steps are computationally efficient, this … Read more

Stochastic model-based minimization of weakly convex functions

We consider an algorithm that successively samples and minimizes stochastic models of the objective function. We show that under weak-convexity and Lipschitz conditions, the algorithm drives the expected norm of the gradient of the Moreau envelope to zero at the rate $O(k^{-1/4})$. Our result yields the first complexity guarantees for the stochastic proximal point algorithm … Read more

Entropic proximal operators for nonnegative trigonometric polynomials

Signal processing applications of semidefinite optimization are often rooted in sum-of-squares representations of nonnegative trigonometric polynomials. Interior-point solvers for semidefinite optimization can handle constraints of this form with a per-iteration-complexity that is cubic in the degree of the trigonometric polynomial. The purpose of this paper is to discuss first-order methods with a lower complexity per … Read more

Derivative-Free Optimization of Noisy Functions via Quasi-Newton Methods

This paper presents a finite difference quasi-Newton method for the minimization of noisy functions. The method takes advantage of the scalability and power of BFGS updating, and employs an adaptive procedure for choosing the differencing interval h based on the noise estimation techniques of Hamming (2012) and Moré and Wild (2011). This noise estimation procedure … Read more

New SOCP relaxation and branching rule for bipartite bilinear programs

A bipartite bilinear program (BBP) is a quadratically constrained quadratic optimization problem where the variables can be partitioned into two sets such that fixing the variables in any one of the sets results in a linear program. We propose a new second order cone representable (SOCP) relaxation for BBP, which we show is stronger than … Read more