A scalable mixed-integer decomposition approach for optimal power system restoration

The optimal restoration problem lies at the foundation of the evaluation and improvement of resilience in power systems. In this paper we present a scalable decomposition algorithm, based on the integer L-shaped method, for solving this problem for realistic power systems. The algorithm works by partitioning the problem into a master problem and a slave … Read more

Exploiting Sparsity for Semi-Algebraic Set Volume Computation

We provide a systematic deterministic numerical scheme to approximate the volume (i.e. the Lebesgue measure) of a basic semi-algebraic set whose description follows a sparsity pattern. As in previous works (without sparsity), the underlying strategy is to consider an infinite-dimensional linear program on measures whose optimal value is the volume of the set. This is … Read more

A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary fi rst and second stage variables

In this paper, we propose a generalized Benders decomposition-based branch and cut algorithm for solving two stage stochastic mixed-integer nonlinear programs (SMINLPs) with mixed binary rst and second stage variables. At a high level, the proposed decomposition algorithm performs spatial branch and bound search on the rst stage variables. Each node in the branch and … Read more

Non-asymptotic Results for Langevin Monte Carlo: Coordinate-wise and Black-box Sampling

Euler-Maruyama and Ozaki discretization of a continuous time diffusion process is a popular technique for sampling, that uses (upto) gradient and Hessian information of the density respectively. The Euler-Maruyama discretization has been used particularly for sampling under the name of Langevin Monte Carlo (LMC) for sampling from strongly log-concave densities. In this work, we make … Read more

Subdifferentials and SNC property of scalarization functionals with uniform level sets and applications

This paper deals with necessary conditions for minimal solutions of constrained and unconstrained optimization problems with respect to general domination sets by using a well-known nonlinear scalarization functional with uniform level sets (called Gerstewitz’ functional in the literature). The primary objective of this work is to establish revised formulas for basic and singular subdifferentials of … Read more

Inexact restoration with subsampled trust-region methods for finite-sum minimization

Convex and nonconvex finite-sum minimization arises in many scientific computing and machine learning applications. Recently, first-order and second-order methods where objective functions, gradients and Hessians are approximated by randomly sampling components of the sum have received great attention. We propose a new trust-region method which employs suitable approximations of the objective function, gradient and Hessian … Read more

Quasi-Newton Methods for Deep Learning: Forget the Past, Just Sample

We present two sampled quasi-Newton methods: sampled LBFGS and sampled LSR1. Contrary to the classical variants of these methods that sequentially build (inverse) Hessian approximations as the optimization progresses, our proposed methods sample points randomly around the current iterate to produce these approximations. As a result, the approximations constructed make use of more reliable (recent … Read more

A study of rank-one sets with linear side constraints and application to the pooling problem

We study sets defined as the intersection of a rank-1 constraint with different choices of linear side constraints. We identify different conditions on the linear side constraints, under which the convex hull of the rank-1 set is polyhedral or second-order cone representable. In all these cases, we also show that a linear objective can be … Read more

Active-set Newton methods and partial smoothness

Diverse optimization algorithms correctly identify, in finite time, intrinsic constraints that must be active at optimality. Analogous behavior extends beyond optimization to systems involving partly smooth operators, and in particular to variational inequalities over partly smooth sets. As in classical nonlinear programming, such active-set structure underlies the design of accelerated local algorithms of Newton type. … Read more

Scheduling jobs with a V-shaped time-dependent processing time

In the field of time-dependent scheduling, a job’s processing time is specified by a function of its start time. While monotonic processing time functions are well-known in the literature, this paper introduces non-monotonic functions with a convex, piecewise-linear V-shape similar to the absolute value function. They are minimum at an ideal start time, which is … Read more