Quantifying the value of flexibility: demand response versus storage

Intermittent sources of energy represent a challenge for electrical networks, particularly regarding demand satisfaction at peak times. Energy management tools such as load shaving or storage systems can be used to mitigate abrupt variations in the network.The value of different mechanisms to move energy through time is determined by a multi-objective programming approach, that aims … Read more

Line-Prioritized Environmental Selection and Normalization Scheme for Many-Objective Optimization using Reference-Line-based Framework

The Pareto-dominance-basedmulti-objective evolutionary algorithms (MOEAs) have been successful in solving many test problems and other engineering optimization problems. However, their performance gets affected when solving more than 3-objective optimization problems due to lack of sufficient selection pressure. Many attempts have been made by the researchers toward improving the environmental selection of those MOEAs. One such … Read more

Spectral properties of Barzilai-Borwein rules in solving singly linearly constrained optimization problems subject to lower and upper bounds

In 1988, Barzilai and Borwein published a pioneering paper which opened the way to inexpensively accelerate first-order methods. More in detail, in the framework of unconstrained optimization, Barzilai and Borwein developed two strategies to select the steplength in gradient descent methods with the aim of encoding some second-order information of the problem without computing and/or … Read more

Computational Simulation as an organizational prototyping tool

This case study deals with a redesign effort to face the overcrowding issue in an Emergency Department (ED). A multidiscinary group of healthcare professionals and engineers worked together to improve the actual processes. We integrate the simulation modeling in a humancentered design method. We use the simulation technique as a learning and experimentation tool into … Read more

Alternative DC Algorithm for Partial DC programming

In this paper, we introduce an alternative DC algorithm for solving partial DC programs. This proposed algorithm is an natural extension of the standard DC algorithm. Furthermore, we also consider an inexact version of this alternative DC algorithm. The convergence of these proposed algorithms (both the exact and inexact versions) are investigated. The applications to … Read more

Globalized Robust Optimization with Gamma-Uncertainties

Globalized robust optimization has been proposed as a generalization of the standard robust optimization framework in order to allow for a controlled decrease in protection depending on the distance of the realized scenario from the predefined uncertainty set. In this work, we specialize the notion of globalized robustness to Gamma-uncertainty in order to extend its … Read more

Benders Cut Classification via Support Vector Machines for Solving Two-stage Stochastic Programs

We consider Benders decomposition for solving two-stage stochastic programs with complete recourse based on finite samples of the uncertain parameters. We define the Benders cuts binding at the final optimal solution or the ones significantly improving bounds over iterations as valuable cuts. We propose a learning-enhanced Benders decomposition (LearnBD) algorithm, which adds a cut classification … Read more

Distributionally Robust Partially Observable Markov Decision Process with Moment-based Ambiguity

We consider a distributionally robust Partially Observable Markov Decision Process (DR-POMDP), where the distribution of the transition-observation probabilities is unknown at the beginning of each decision period, but their realizations can be inferred using side information at the end of each period after an action being taken. We build an ambiguity set of the joint … Read more

Portfolio Optimization with Irreversible Long-Term Investments in Renewable Energy under Policy Risk: A Mixed-Integer Multistage Stochastic Model and a Moving-Horizon Approach

Portfolio optimization is an ongoing hot topic of mathematical optimization and management science. Due to the current financial market environment with low interest rates and volatile stock markets, it is getting more and more important to extend portfolio optimization models by other types of investments than classical assets. In this paper, we present a mixed-integer … Read more

On the Complexity of an Augmented Lagrangian Method for Nonconvex Optimization

In this paper we study the worst-case complexity of an inexact Augmented Lagrangian method for nonconvex constrained problems. Assuming that the penalty parameters are bounded, we prove a complexity bound of $\mathcal{O}(|\log(\epsilon)|)$ outer iterations for the referred algorithm to generate an $\epsilon$-approximate KKT point, for $\epsilon\in (0,1)$. When the penalty parameters are unbounded, we prove … Read more