A Note on Semidefinite Representable Reformulations for Two Variants of the Trust-Region Subproblem

Motivated by encouraging numerical results in the literature, in this note we consider two specific variants of the trust-region subproblem and provide exact semidefinite representable reformulations. The first is over the intersection of two balls; the second is over the intersection of a ball and a special second-order conic representable set. Different from the technique … Read more

A Brief Introduction to Robust Bilevel Optimization

Bilevel optimization is a powerful tool for modeling hierarchical decision making processes. However, the resulting problems are challenging to solve – both in theory and practice. Fortunately, there have been significant algorithmic advances in the field so that we can solve much larger and also more complicated problems today compared to what was possible to … Read more

An efficient gradient-free line search

This paper introduces a new line search along an arbitrary smooth search path that starts at the current iterate tangentially to a descent direction. Like the Goldstein line search and unlike the Wolfe line search, the new line search uses, beyond the gradient at the current iterate, only function values. Using this line search with … Read more

Distributionally Robust Optimal Allocation with Costly Verification

We consider the mechanism design problem of a principal allocating a single good to one of several agents without monetary transfers. Each agent desires the good and uses it to create value for the principal. We designate this value as the agent’s private type. Even though the principal does not know the agents’ types, she … Read more

Approximation Hierarchies for Copositive Cone over Symmetric Cone and Their Comparison

We first provide an inner-approximation hierarchy described by a sum-of-squares (SOS) constraint for the copositive (COP) cone over a general symmetric cone. The hierarchy is a generalization of that proposed by Parrilo (2000) for the usual COP cone (over a nonnegative orthant). We also discuss its dual. Second, we characterize the COP cone over a … Read more

Scalable heuristic algorithm for identifying critical nodes in networks

This paper presents two heuristic algorithms for the distance-based critical node problem (DCNP) that finds k nodes whose removal minimizes the pairwise connection within D hops in the remaining network. The structural properties of the complex networks have not yet been extensively addressed in the literature. Specifically, the community structure of complex networks needs to … Read more

Deep learning and hyperparameter optimization for assessing one’s eligibility for a subcutaneous implantable cardioverter-defibrillator

In cardiology, it is standard for patients suffering from ventricular arrhythmias (the leading cause of sudden cardiac death) belonging to high risk populations to be treated using Subcutaneous Implantable Cardioverter-Defibrillators (S-ICDs). S-ICDs carry a risk of so-called T Wave Over Sensing (TWOS), which can lead to inappropriate shocks with an inherent health risk. For this … Read more

Scheduling of healthcare professionals using Bayesian Optimization

In this paper we present a Bayesian optimization framework that iteratively “learns” good schedules for healthcare professionals of outpatient healthcare in a hospital, that minimize the overall number of patients in queue — we understand that a patient in schedule is one in queue. The hospital has several medical specialties and each is modeled as … Read more

Stochastic Programming Models for a Fleet Sizing and Appointment Scheduling Problem with Random Service and Travel Times

We propose a new stochastic mixed-integer linear programming model for a home service fleet sizing and appointment scheduling problem (HFASP) with random service and travel times. Specifically, given a set of providers and a set of geographically distributed customers within a service region, our model solves the following decision problems simultaneously: (i) a fleet sizing … Read more

Iteration Complexity of Fixed-Step Methods by Nesterov and Polyak for Convex Quadratic Functions

This note considers the momentum method by Polyak and the accelerated gradient method by Nesterov, both without line search but with fixed step length applied to strictly convex quadratic functions assuming that exact gradients are used and appropriate upper and lower bounds for the extreme eigenvalues of the Hessian matrix are known. Simple 2-d-examples show … Read more