Integrality of Linearizations of Polynomials over Binary Variables using Additional Monomials

Polynomial optimization problems over binary variables can be expressed as integer programs using a linearization with extra monomials in addition to those arising in the given polynomial. We characterize when such a linearization yields an integral relaxation polytope, generalizing work by Del Pia and Khajavirad (SIAM Journal on Optimization, 2018) and Buchheim, Crama and Rodríguez-Heck … Read more

Polynomial Size IP Formulations of Knapsack May Require Exponentially Large Coefficients

A desirable property of integer formulations is to consist of few inequalities having small coefficients. We show that these targets are conflicting by proving the existence of knapsack sets that need exponentially many inequalities or exponentially large coefficients in any integer formulation. Moreover, we show that there exist undirected graphs such that (in a natural … Read more

Knapsack Polytopes – A Survey

The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy a given single linear inequality with non-negative coefficients. This paper provides a comprehensive overview of knapsack polytopes. We discuss basic polyhedral properties, (lifted) cover and other valid inequalities, cases for which complete linear descriptions are known, geometric properties for small dimensions, … Read more

Strong IP Formulations Need Large Coefficients

The development of practically well-behaving integer programming formulations is an important aspect of solving linear optimization problems over a set $X \subseteq \{0,1\}^n$. In practice, one is often interested in strong integer formulations with additional properties, e.g., bounded coefficients to avoid numerical instabilities. This article presents a lower bound on the size of coefficients in … Read more

Mixed-Integer Programming Techniques for the Connected Max-k-Cut Problem

We consider an extended version of the classical Max-k-Cut problem in which we additionally require that the parts of the graph partition are connected. For this problem we study two alternative mixed-integer linear formulations and review existing as well as develop new branch-and-cut techniques like cuts, branching rules, propagation, primal heuristics, and symmetry breaking. The … Read more

The SCIP Optimization Suite 6.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion … Read more

The SCIP Optimization Suite 5.0

This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over … Read more

Extended Formulations for Column Constrained Orbitopes

In the literature, packing and partitioning orbitopes were discussed to handle symmetries that act on variable matrices in certain binary programs. In this paper, we extend this concept by restrictions on the number of 1-entries in each column. We develop extended formulations of the resulting polytopes and present numerical results that show their effect on … Read more

On the Size of Integer Programs with Bounded Coefficients or Sparse Constraints

Integer programming formulations describe optimization problems over a set of integer points. A fundamental problem is to determine the minimal size of such formulations, in particular, if the size of the coefficients or sparsity of the constraints is bounded. This article considers lower and upper bounds on these sizes both in the original and in … Read more

Packing, Partitioning, and Covering Symresacks

In this paper, we consider symmetric binary programs that contain set packing, partitioning, or covering inequalities. To handle symmetries as well as set packing, partitioning, or covering constraints simultaneously, we introduce constrained symresacks which are the convex hull of all binary points that are lexicographically not smaller than their image w.r.t. a coordinate permutation and … Read more