Mixed-Integer Programming Techniques for the Connected Max-k-Cut Problem

We consider an extended version of the classical Max-k-Cut problem in which we additionally require that the parts of the graph partition are connected. For this problem we study two alternative mixed-integer linear formulations and review existing as well as develop new branch-and-cut techniques like cuts, branching rules, propagation, primal heuristics, and symmetry breaking. The … Read more

The SCIP Optimization Suite 6.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion … Read more

The SCIP Optimization Suite 5.0

This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over … Read more

Extended Formulations for Column Constrained Orbitopes

In the literature, packing and partitioning orbitopes were discussed to handle symmetries that act on variable matrices in certain binary programs. In this paper, we extend this concept by restrictions on the number of 1-entries in each column. We develop extended formulations of the resulting polytopes and present numerical results that show their effect on … Read more

On the Size of Integer Programs with Bounded Coefficients or Sparse Constraints

Integer programming formulations describe optimization problems over a set of integer points. A fundamental problem is to determine the minimal size of such formulations, in particular, if the size of the coefficients or sparsity of the constraints is bounded. This article considers lower and upper bounds on these sizes both in the original and in … Read more

Packing, Partitioning, and Covering Symresacks

In this paper, we consider symmetric binary programs that contain set packing, partitioning, or covering inequalities. To handle symmetries as well as set packing, partitioning, or covering constraints simultaneously, we introduce constrained symresacks which are the convex hull of all binary points that are lexicographically not smaller than their image w.r.t. a coordinate permutation and … Read more

Polytopes Associated with Symmetry Handling

This paper investigates a polyhedral approach to handle symmetries in mixed-binary programs. We study symretopes, i.e., the convex hulls of all binary vectors that are lexicographically maximal in their orbit with respect to the symmetry group. These polytopes turn out to be quite complex. For practical use, we therefore develop an integer programming formulation with … Read more

A Polyhedral Investigation of Star Colorings

Given a weighted undirected graph~$G$ and a nonnegative integer~$k$, the maximum~$k$-star colorable subgraph problem consists of finding an induced subgraph of~$G$ which has maximum weight and can be star colored with at most~$k$ colors; a star coloring does not color adjacent nodes with the same color and avoids coloring any 4-path with exactly two colors. … Read more