Robust Growth-Optimal Portfolios

The growth-optimal portfolio is designed to have maximum expected log-return over the next rebalancing period. Thus, it can be computed with relative ease by solving a static optimization problem. The growth-optimal portfolio has sparked fascination among finance professionals and researchers because it can be shown to outperform any other portfolio with probability 1 in the … Read more

K-Adaptability in Two-Stage Robust Binary Programming

Over the last two decades, robust optimization has emerged as a computationally attractive approach to formulate and solve single-stage decision problems affected by uncertainty. More recently, robust optimization has been successfully applied to multi-stage problems with continuous recourse. This paper takes a step towards extending the robust optimization methodology to problems with integer recourse, which … Read more

Generalized Gauss Inequalities via Semidefinite Programming

A sharp upper bound on the probability of a random vector falling outside a polytope, based solely on the first and second moments of its distribution, can be computed efficiently using semidefinite programming. However, this Chebyshev-type bound tends to be overly conservative since it is determined by a discrete worst-case distribution. In this paper we … Read more

Robust Data-Driven Dynamic Programming

In stochastic optimal control the distribution of the exogenous noise is typically unknown and must be inferred from limited data before dynamic programming (DP)-based solution schemes can be applied. If the conditional expectations in the DP recursions are estimated via kernel regression, however, the historical sample paths enter the solution procedure directly as they determine … Read more

Distributionally robust control of constrained stochastic systems

We investigate the control of constrained stochastic linear systems when faced with only limited information regarding the disturbance process, i.e. when only the first two moments of the disturbance distribution are known. We consider two types of distributionally robust constraints. The constraints of the first type are required to hold with a given probability for … Read more

Interdiction Games on Markovian PERT Networks

In a stochastic interdiction game a proliferator aims to minimize the expected duration of a nuclear weapons development project, while an interdictor endeavors to maximize the project duration by delaying some of the project tasks. We formulate static and dynamic versions of the interdictor’s decision problem where the interdiction plan is either pre-committed or adapts … Read more

Distributionally Robust Convex Optimization

Distributionally robust optimization is a paradigm for decision-making under uncertainty where the uncertain problem data is governed by a probability distribution that is itself subject to uncertainty. The distribution is then assumed to belong to an ambiguity set comprising all distributions that are compatible with the decision maker’s prior information. In this paper, we propose … Read more

Distributionally Robust Multi-Item Newsvendor Problems with Multimodal Demand Distributions

We present a risk-averse multi-dimensional newsvendor model for a class of products whose demands are strongly correlated and subject to fashion trends that are not fully understood at the time when orders are placed. The demand distribution is known to be multimodal in the sense that there are spatially separated clusters of probability mass but … Read more

The Decision Rule Approach to Optimization under Uncertainty: Methodology and Applications

Dynamic decision-making under uncertainty has a long and distinguished history in operations research. Due to the curse of dimensionality, solution schemes that naively partition or discretize the support of the random problem parameters are limited to small and medium-sized problems, or they require restrictive modeling assumptions (e.g., absence of recourse actions). In the last few … Read more

A Polynomial-Time Solution Scheme for Quadratic Stochastic Programs

We consider quadratic stochastic programs with random recourse – a class of problems which is perceived to be computationally demanding. Instead of using mainstream scenario tree-based techniques, we reduce computational complexity by restricting the space of recourse decisions to those linear and quadratic in the observations, thereby obtaining an upper bound on the original problem. … Read more