Adjustable Robust Optimization Reformulations of Two-Stage Worst-case Regret Minimization Problems

This paper explores the idea that two-stage worst-case regret minimization problems with either objective or right-hand side uncertainty can be reformulated as two-stage robust optimization problems and can therefore benefit from the solution schemes and theoretical knowledge that have been developed in the last decade for this class of problems. In particular, we identify conditions … Read more

Probabilistic Envelope Constrained Multiperiod Stochastic Emergency Medical Services Location Model and Decomposition Scheme

This paper considers a multiperiod Emergency Medical Services (EMS) location problem and introduces two two-stage stochastic programming formulations that account for uncertainty about emergency demand. While the first model considers both a constraint on the probability of covering the realized emergency demand and minimizing the expected cost of doing so, the second one employs probabilistic … Read more

The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems

Randomization refers to the process of taking decisions randomly according to the outcome of an independent randomization device such as a dice or a coin flip. The concept is unconventional, and somehow counterintuitive, in the domain of mathematical programming, where deterministic decisions are usually sought even when the problem parameters are uncertain. However, it has … Read more

Shortfall Risk Models When Information of Loss Function Is Incomplete

Utility-based shortfall risk measure (SR) has received increasing attentions over the past few years for its potential to quantify more effectively the risk of large losses than conditional value at risk. In this paper we consider the case that the true loss function is unavailable either because it is difficult to be identified or the … Read more

Generalization Bounds for Regularized Portfolio Selection with Market Side Information

Drawing on statistical learning theory, we derive out-of-sample and suboptimal guarantees about the investment strategy obtained from a regularized portfolio optimization model which attempts to exploit side information about the financial market in order to reach an optimal risk-return tradeoff. This side information might include for instance recent stock returns, volatility indexes, financial news indicators, … Read more

A successive linear programming algorithm with non-linear time series for the reservoir management problem

This paper proposes a multi-stage stochastic programming formulation based on affine decision rules for the reservoir management problem. Our approach seeks to find a release schedule that balances flood control and power generation objectives while considering realistic operating conditions as well as variable water head. To deal with the non-convexity introduced by the variable water … Read more

Dice-sion Making under Uncertainty: When Can a Random Decision Reduce Risk?

Stochastic programming and distributionally robust optimization seek deterministic decisions that optimize a risk measure, possibly in view of the most adverse distribution in an ambiguity set. We investigate under which circumstances such deterministic decisions are strictly outperformed by random decisions which depend on a randomization device producing uniformly distributed samples that are independent of all … Read more

A stochastic program with tractable time series and affine decision rules for the reservoir management problem

This paper proposes a multi-stage stochastic programming formulation for the reservoir management problem. Our problem specifically consists in minimizing the risk of floods over a fixed time horizon for a multi-dimensional hydro-electrical complex. We consider well-studied linear time series model and enhance the approach to consider heteroscedasticity. Using these stochastic processes under very general distributional … Read more

Linearized Robust Counterparts of Two-stage Robust Optimization Problem with Applications in Operations Management

In this article, we discuss an alternative method for deriving conservative approximation models for two-stage robust optimization problems. The method extends in a natural way a linearization scheme that was recently proposed to construct tractable reformulations for robust static problems involving profit functions that decompose as a sum of piecewise linear concave expressions. Given that … Read more

A robust optimization model for the risk averse reservoir management problem

This paper presents a new formulation for the risk averse stochastic reservoir management problem. Using recent advances in robust optimization and stochastic programming, we propose a dynamic, multi-objective model based on minimization of a multidimensional risk measure associated with floods and droughts for a hydro-electrical complex. We present our model and then identify approximate solutions … Read more