ADMM for the SDP relaxation of the QAP

The semidefinite programming (SDP) relaxation has proven to be extremely strong for many hard discrete optimization problems. This is in particular true for the quadratic assignment problem (QAP), arguably one of the hardest NP-hard discrete optimization problems. There are several difficulties that arise in efficiently solving the SDP relaxation, e.g., increased dimension; inefficiency of the … Read more

Noisy Euclidean distance realization: robust facial reduction and the Pareto frontier

We present two algorithms for large-scale low-rank Euclidean distance matrix completion problems, based on semidefinite optimization. Our first method works by relating cliques in the graph of the known distances to faces of the positive semidefinite cone, yielding a combinatorial procedure that is provably robust and parallelizable. Our second algorithm is a first order method … Read more

Projection methods in quantum information science

We consider the problem of constructing quantum operations or channels, if they exist, that transform a given set of quantum states $\{\rho_1, \dots, \rho_k\}$ to another such set $\{\hat\rho_1, \dots, \hat\rho_k\}$. In other words, we must find a {\em completely positive linear map}, if it exists, that maps a given set of density matrices to … Read more

Sensitivity analysis of semidefinite programs without strong duality

Suppose that we are given a feasible conic program with a finite optimal value and with strong duality failing. It is known that there are small perturbations of the problem data that lead to relatively big changes in the optimal value. We quantify the notion of big change in the case of a semidefinite program … Read more

Coordinate shadows of semi-definite and Euclidean distance matrices

We consider the projected semi-definite and Euclidean distance cones onto a subset of the matrix entries. These two sets are precisely the input data defining feasible semi-definite and Euclidean distance completion problems. We characterize when these sets are closed, and use the boundary structure of these two sets to elucidate the Krislock-Wolkowicz facial reduction algorithm. … Read more

Eigenvalue, Quadratic Programming, and Semidefinite Programming Relaxations for a Cut Minimization Problem

We consider the problem of partitioning the node set of a graph into $k$ sets of given sizes in order to \emph{minimize the cut} obtained using (removing) the $k$-th set. If the resulting cut has value $0$, then we have obtained a vertex separator. This problem is closely related to the graph partitioning problem. In … Read more

Extreme point inequalities and geometry of the rank sparsity ball

We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the l_1 norm of its entries — a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general convex … Read more

The Generalized Trust Region Subproblem

The \emph{interval bounded generalized trust region subproblem} (GTRS) consists in minimizing a general quadratic objective, $q_0(x) \rightarrow \min$, subject to an upper and lower bounded general quadratic constraint, $\ell \leq q_1(x) \leq u$. This means that there are no definiteness assumptions on either quadratic function. We first study characterizations of optimality for this \emph{implicitly} convex … Read more

Preprocessing and Reduction for Degenerate Semidefinite Programs

This paper presents a backward stable preprocessing technique for (nearly) ill-posed semidefinite programming, SDP, problems, i.e.,~programs for which Slater’s constraint qualification, existence of strictly feasible points, (nearly) fails. Current popular algorithms for semidefinite programming rely on \emph{primal-dual interior-point, p-d i-p} methods. These algorithms require Slater’s constraint qualification for both the primal and dual problems. This … Read more

A Robust Algorithm for Semidefinite Programming

Current successful methods for solving semidefinite programs, SDP, are based on primal-dual interior-point approaches. These usually involve a symmetrization step to allow for application of Newton’s method followed by block elimination to reduce the size of the Newton equation. Both these steps create ill-conditioning in the Newton equation and singularity of the Jacobian of the … Read more