Computing Technical Capacities in the European Entry-Exit Gas Market is NP-Hard

As a result of its liberalization, the European gas market is organized as an entry-exit system in order to decouple the trading and transport of natural gas. Roughly summarized, the gas market organization consists of four subsequent stages. First, the transmission system operator (TSO) is obliged to allocate so-called maximal technical capacities for the nodes … Read more

Outer Approximation for Global Optimization of Mixed-Integer Quadratic Bilevel Problems

Bilevel optimization problems have received a lot of attention in the last years and decades. Besides numerous theoretical developments there also evolved novel solution algorithms for mixed-integer linear bilevel problems and the most recent algorithms use branch-and-cut techniques from mixed-integer programming that are especially tailored for the bilevel context. In this paper, we consider MIQP-QP … Read more

The Impact of Neighboring Markets on Renewable Locations, Transmission Expansion, and Generation Investment

Many long-term investment planning models for liberalized electricity markets either optimize for the entire electricity system or focus on confined jurisdictions, abstracting from adjacent markets. In this paper, we provide models for analyzing the impact of the interdependencies between a core electricity market and its neighboring markets on key long-run decisions. This we do both … Read more

Deciding Feasibility of a Booking in the European Gas Market on a Cycle is in P for the Case of Passive Networks

We show that the feasibility of a booking in the European entry-exit gas market can be decided in polynomial time on single-cycle networks that are passive, i.e., do not contain controllable elements. The feasibility of a booking can be characterized by solving polynomially many nonlinear potential-based flow models for computing so-called potential-difference maximizing load flow … Read more

Gamma-Robust Linear Complementarity Problems with Ellipsoidal Uncertainty Sets

We study uncertain linear complementarity problems (LCPs), i.e., problems in which the LCP vector q or the LCP matrix M may contain uncertain parameters. To this end, we use the concept of Gamma-robust optimization applied to the gap function formulation of the LCP. Thus, this work builds upon [16]. There, we studied Gamma-robustified LCPs for … Read more

Nonlinear Optimization of District Heating Networks

We develop a complementarity-constrained nonlinear optimization model for the time-dependent control of district heating networks. The main physical aspects of water and heat flow in these networks are governed by nonlinear and hyperbolic 1d partial differential equations. In addition, a pooling-type mixing model is required at the nodes of the network to treat the mixing … Read more

Optimal Design of Retailer-Prosumer Electricity Tariffs Using Bilevel Optimization

We compare various flexible tariffs that have been proposed to cost-effectively govern a prosumer’s electricity management – in particular time-of-use (TOU), critical-peak-pricing (CPP), and a real-time-pricing tariff (RTP). As the outside option, we consider a fixed-price tariff (FP) that restricts the specific characteristics of TOU, CPP, and RTP, so that the flexible tariffs are at … Read more

Portfolio Optimization with Irreversible Long-Term Investments in Renewable Energy under Policy Risk: A Mixed-Integer Multistage Stochastic Model and a Moving-Horizon Approach

Portfolio optimization is an ongoing hot topic of mathematical optimization and management science. Due to the current financial market environment with low interest rates and volatile stock markets, it is getting more and more important to extend portfolio optimization models by other types of investments than classical assets. In this paper, we present a mixed-integer … Read more

There’s No Free Lunch: On the Hardness of Choosing a Correct Big-M in Bilevel Optimization

One of the most frequently used approaches to solve linear bilevel optimization problems consists in replacing the lower-level problem with its Karush-Kuhn-Tucker (KKT) conditions and by reformulating the KKT complementarity conditions using techniques from mixed-integer linear optimization. The latter step requires to determine some big-M constant in order to bound the lower level’s dual feasible … Read more

A Decomposition Heuristic for Mixed-Integer Supply Chain Problems

Mixed-integer supply chain models typically are very large but are also very sparse and can be decomposed into loosely coupled blocks. In this paper, we use general-purpose techniques to obtain a block decomposition of supply chain instances and apply a tailored penalty alternating direction method, which exploits the structural properties of the decomposed instances. We … Read more