Trust-region methods for the derivative-free optimization of nonsmooth black-box functions

In this paper we study the minimization of a nonsmooth black-box type function, without assuming any access to derivatives or generalized derivatives and without any knowledge about the analytical origin of the function nonsmoothness. Directional methods have been derived for such problems but to our knowledge no model-based method like a trust-region one has yet … Read more

Scanning integer points with lex-inequalities: A finite cutting plane algorithm for integer programming with linear objective

We consider the integer points in a unimodular cone K ordered by a lexicographic rule defined by a lattice basis. To each integer point x in K we associate a family of inequalities (lex-inequalities) that defines the convex hull of the integer points in K that are not lexicographically smaller than x. The family of … Read more

First-order methods for the impatient: support identification in finite time with convergent Frank-Wolfe variants

In this paper, we focus on the problem of minimizing a non-convex function over the unit simplex. We analyze two well-known and widely used variants of the Frank-Wolfe algorithm and first prove global convergence of the iterates to stationary points both when using exact and Armijo line search. Then we show that the algorithms identify … Read more

An algorithmic framework based on primitive directions and nonmonotone line searches for black box problems with integer variables

In this paper, we develop a new algorithmic framework that handles black box problems with integer variables. The strategy included in the framework makes use of specific search directions (so called primitive directions) and a suitably developed nonmonotone line search, thus guaranteeing a high level of freedom when exploring the integer lattice. We first describe … Read more

A General Regularized Continuous Formulation for the Maximum Clique Problem

In this paper, we develop a general regularization-based continuous optimization framework for the maximum clique problem. In particular, we consider a broad class of regularization terms that can be included in the classic Motzkin-Strauss formulation and we develop conditions that guarantee the equivalence between the continuous regularized problem and the original one in both a … Read more

A simplicial decomposition framework for large scale convex quadratic programming

In this paper, we analyze in depth a simplicial decomposition like algorithmic framework for large scale convex quadratic programming. In particular, we first propose two tailored strategies for handling the master problem. Then, we describe a few techniques for speeding up the solution of the pricing problem. We report extensive numerical experiments on both real … Read more

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

In this paper, we describe a new active-set algorithmic framework for minimizing a non-convex function over the unit simplex. At each iteration, the method makes use of a rule for identifying active variables (i.e., variables that are zero at a stationary point) and specific directions (that we name active-set gradient related directions) satisfying a new … Read more

A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization

In this paper, we describe a two-stage method for solving optimization problems with bound constraints. It combines the active-set estimate described in [Facchinei and Lucidi, 1995] with a modification of the non-monotone line search framework recently proposed in [De Santis et al., 2012]. In the first stage, the algorithm exploits a property of the active-set … Read more

A DERIVATIVE-FREE APPROACH TO CONSTRAINED MULTIOBJECTIVE NONSMOOTH OPTIMIZATION

In this work, we consider multiobjective optimization problems with both bound constraints on the variables and general nonlinear constraints, where objective and constraint function values can only be obtained by querying a black box. We define a linesearch-based solution method, and we show that it converges to a set of Pareto stationary points. To this … Read more

A Frank-Wolfe Based Branch-and-Bound Algorithm for Mean-Risk Optimization

We present an exact algorithm for mean-risk optimization subject to a budget constraint, where decision variables may be continuous or integer. The risk is measured by the covariance matrix and weighted by an arbitrary monotone function, which allows to model risk-aversion in a very individual way. We address this class of convex mixed-integer minimization problems … Read more