Openness, Holder metric regularity and Holder continuity properties of semialgebraic set-valued maps

Given a semialgebraic set-valued map $F \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ with closed graph, we show that the map $F$ is Holder metrically subregular and that the following conditions are equivalent: (i) $F$ is an open map from its domain into its range and the range of $F$ is locally closed; (ii) the map $F$ is … Read more

Complementary problems with polynomial data

Given polynomial maps $f, g \colon \mathbb{R}^n \to \mathbb{R}^n,$ we consider the {\em polynomial complementary problem} of finding a vector $x \in \mathbb{R}^n$ such that \begin{equation*} f(x) \ \ge \ 0, \quad g(x) \ \ge \ 0, \quad \textrm{ and } \quad \langle f(x), g(x) \rangle \ = \ 0. \end{equation*} In this paper, we … Read more

Tangencies and Polynomial Optimization

Given a polynomial function $f \colon \mathbb{R}^n \rightarrow \mathbb{R}$ and a unbounded basic closed semi-algebraic set $S \subset \mathbb{R}^n,$ in this paper we show that the conditions listed below are characterized exactly in terms of the so-called {\em tangency variety} of $f$ on $S$: (i) The $f$ is bounded from below on $S;$ (ii) The … Read more

Local minimizers of semi-algebraic functions

Consider a semi-algebraic function $f\colon\mathbb{R}^n \to {\mathbb{R}},$ which is continuous around a point $\bar{x} \in \mathbb{R}^n.$ Using the so–called {\em tangency variety} of $f$ at $\bar{x},$ we first provide necessary and sufficient conditions for $\bar{x}$ to be a local minimizer of $f,$ and then in the case where $\bar{x}$ is an isolated local minimizer of … Read more

On types of degenerate critical points of real polynomial functions

In this paper, we consider the problem of identifying the type (local minimizer, maximizer or saddle point) of a given isolated real critical point $c$, which is degenerate, of a multivariate polynomial function $f$. To this end, we introduce the definition of faithful radius of $c$ by means of the curve of tangency of $f$. … Read more

Optimality conditions for minimizers at infinity in polynomial programming

In this paper we study necessary optimality conditions for the optimization problem $$\textrm{infimum}f_0(x) \quad \textrm{ subject to } \quad x \in S,$$ where $f_0 \colon \mathbb{R}^n \rightarrow \mathbb{R}$ is a polynomial function and $S \subset \mathbb{R}^n$ is a set defined by polynomial inequalities. Assume that the problem is bounded below and has the Mangasarian–Fromovitz property … Read more

On the Existence of Pareto Solutions for Polynomial Vector Optimization Problems

We are interested in the existence of Pareto solutions to the vector optimization problem $$\text{\rm Min}_{\,\mathbb{R}^m_+} \{f(x) \,|\, x\in \mathbb{R}^n\},$$ where $f\colon\mathbb{R}^n\to \mathbb{R}^m$ is a polynomial map. By using the {\em tangency variety} of $f$ we first construct a semi-algebraic set of dimension at most $m – 1$ containing the set of Pareto values of … Read more

Semidefinite approximations of the polynomial abscissa

Given a univariate polynomial, its abscissa is the maximum real part of its roots. The abscissa arises naturally when controlling linear differential equations. As a function of the polynomial coefficients, the abscissa is H\”older continuous, and not locally Lipschitz in general, which is a source of numerical difficulties for designing and optimizing control laws. In … Read more

Generic properties for semialgebraic programs

In this paper we study genericity for the following parameterized class of nonlinear programs: \begin{eqnarray*} \textrm{minimize } f_u(x) := f(x) – \langle u, x \rangle \quad \textrm{subject to } \quad x \in S, \end{eqnarray*} where $f \colon \mathbb{R}^n \rightarrow \mathbb{R}$ is a polynomial function and $S \subset \mathbb{R}^n$ is a closed semialgebraic set, which is … Read more

Stability and genericity for semi-algebraic compact programs

In this paper we consider the class of polynomial optimization problems with inequality and equality constraints, in which every problem of the class is obtained by perturbations of the objective function, while the constraint functions are kept fixed. Under certain assumptions, we establish some stability properties (e.g., strong H\”older stability with explicitly determined exponents, semicontinuity, … Read more