Optimal Job Scheduling with Day-ahead Price and Random Local Distributed Generation: A Two-stage Robust Approach

In this paper, we consider a job scheduling problem with random local generation, in which some jobs must be scheduled day-ahead while the others can be scheduled in a real time fashion. To capture the randomness of the local distributed generation, we develop a two-stage robust optimization model by assuming an uncertainty set without probability … Read more

Decision Making under Uncertainty when Preference Information is Incomplete

We consider the problem of optimal decision making under uncertainty but assume that the decision maker’s utility function is not completely known. Instead, we consider all the utilities that meet some criteria, such as preferring certain lotteries over certain other lotteries and being risk averse, s-shaped, or prudent. This extends the notion of stochastic dominance. … Read more

Simulation Optimization for the Stochastic Economic Lot Scheduling Problem

We study simulation optimization methods for the stochastic economic lot scheduling problem. In contrast to prior research, we focus on methods that treat this problem as a black box. Based on a large-scale numerical study, we compare approximate dynamic programming with a global search for parameters of simple control policies. We propose two value function … Read more

Dynamic Graph Generation for Large Scale Operational Train Timetabling

The aim of operational train timetabling is to find a conflict free timetable for a set of passenger and freight trains with predefined stopping time windows along given routes in an infrastructure network so that station capacities and train dependent running and headway times are observed. Typical models for this problem are based on time-discretized … Read more

Preferences for Travel Time under Risk and Ambiguity: Implications in Path Selection and Network Equilibrium

In this paper, we study the preferences for uncertain travel time in which the probability distribution may not be fully characterized. In evaluating an uncertain travel time, we explicitly distinguish between risk, where probability distribution is precisely known, and ambiguity, where it is not. In particular, we propose a new criterion called ambiguity-aware CARA travel … Read more

The Reliable Hub-and-spoke Design Problem: Models and Algorithms

This paper presents a study on reliable single and multiple allocation hub-and-spoke network design problems where disruptions at hubs and the resulting hub unavailability can be mitigated by backup hubs and alternative routes. It builds nonlinear mixed integer programming models and presents linearized formulas. To solve those difficult problems, Lagrangian relaxation and Branch-and-Bound methods are … Read more

Neighborhood based heuristics for a Two-level Hierarchical Location Problem with modular node capacities

In many telecommunication network architectures a given set of client nodes must be served by different kinds of facility, which provide di fferent services and have diff erent capabilities. Such facilities must be located and dimensioned in the design phase. We tackle a particular location problem in which two sets of facilities, mid level and high level, … Read more

Optimal construction of a fund of funds

We study the problem of diversifying a given initial capital over a finite number of investment funds that follow different trading strategies. The investment funds operate in a market where a finite number of underlying assets may be traded over finite discrete time. We present a numerical procedure for finding a diversification that is optimal … Read more

Food Regulated Pareto Multi-Species: a new ACO Approach for the Multi-objective Shortest Path Problem

The use of metaheuristics in Multi-objective Combinatorial Optimization, particularly Ant Colony Optimization (ACO), has grown recently. This paper proposes an approach where multi-species ants compete for food resources. Each species has its own search strategy and do not access pheromone information of other species. As in nature, successful ant populations are allowed to grow, whereas … Read more

A biased random-key genetic algorithm for job-shop scheduling

This paper presents a local search, based on a new neighborhood for the job-shop scheduling problem, and its application within a biased random-key genetic algorithm. Schedules are constructed by decoding the chromosome supplied by the genetic algorithm with a procedure that generates active schedules. After an initial schedule is obtained, a local search heuristic, based … Read more