Coherent Risk Measures in Inventory Problems

We analyze an extension of the classical multi-period, single-item, linear cost inventory problem where the objective function is a coherent risk measure. Properties of coherent risk measures allow us to offer a unifying treatment of risk averse and min-max type formulations. For the single period newsvendor problem, we show that the structure of the optimal … Read more

The multi-item capacitated lot-sizing problem with setup times and shortage costs

We address a multi-item capacitated lot-sizing problem with setup times and shortage costs that arises in real-world production planning problems. Demand cannot be backlogged, but can be totally or partially lost. The problem is NP-hard. A mixed integer mathematical formulation is presented. Our approach in this paper is to propose some classes of valid inequalities … Read more

A Random Key Based Genetic Algorithm for the Resource Constrained Project Scheduling Problem

This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach … Read more

The value of multi-stage stochastic programming in capacity planning under uncertainty

This paper addresses a general class of capacity planning problems under uncertainty, which arises, for example, in semiconductor tool purchase planning. Using a scenario tree to model the evolution of the uncertainties, we develop a multi-stage stochastic integer programming formulation for the problem. In contrast to earlier two-stage approaches, the multi-stage model allows for revision … Read more

In Situ Column Generation for a Cutting-Stock Problem

Working with an integer bilinear programming formulation of a one-dimensional cutting-stock problem, we develop an ILP-based local-search heuristic. The ILPs holistically integrate the master and subproblem of the usual price driven pattern-generation paradigm, resulting in a unified model that generates new patterns in situ. We work harder to generate new columns, but we are guaranteed … Read more

Manufacturer’s Mixed Pallet Design Problem

We study a problem faced by a major beverage producer. The company produces and distributes several brands to various customers from its regional distributors. For some of these brands, most customers do not have enough demand to justify full pallet shipments. Therefore, the company decided to design a number of mixed or “rainbow” pallets so … Read more

Convex Optimization of Centralized Inventory Operations

Given a finite set of outlets with joint normally distributed demands and identical holding and penalty costs, inventory centralization induces a cooperative cost allocation game with nonempty core. It is well known that for this newsvendor inventory setting the expected cost of centralization can be expressed as a constant multiple of the standard deviation of … Read more

Note: A Graph-Theoretical Approach to Level of Repair Analysis

Level of Repair Analysis (LORA) is a prescribed procedure for defence logistics support planning. For a complex engineering system containing perhaps thousands of assemblies, sub-assemblies, components, etc. organized into several levels of indenture and with a number of possible repair decisions, LORA seeks to determine an optimal provision of repair and maintenance facilities to minimize … Read more

Stochastic p-Robust Location Problems

Many objectives have been proposed for optimization under uncertainty. The typical stochastic programming objective of minimizing expected cost may yield solutions that are inexpensive in the long run but perform poorly under certain realizations of the random data. On the other hand, the typical robust optimization objective of minimizing maximum cost or regret tends to … Read more

A p-Median Model for Assortment and Trim Loss Minimization with an Application to the Glass Industry

One of the main issues in the glass industry is the minimization of the trim loss generated when cutting large parts (stocks) into small items. In our application stocks are produced in the plant. Many distinct stock sizes are feasible, and technical constraints limit the variety of cutting patterns to those producing a single type … Read more