A Stochastic Programming Approach for Shelter Location and Evacuation Planning

Shelter location and traffic allocation decisions are critical for an efficient evacuation plan. In this study, we propose a scenario-based two-stage stochastic evacuation planning model that optimally locates shelter sites and that assigns evacuees to nearest shelters and to shortest paths within a tolerance degree to minimize the expected total evacuation time. Our model considers … Read more

Pickup and delivery problem with time windows: a new compact two-index formulation

We propose a formulation for the pickup and delivery problem with time windows, based on a novel modeling strategy that allows the assignment of vehicles to routes explicitly in two-index flow formulations. It leads to an effective compact formulation that can benefit OR practitioners interested in solving the problem by general-purpose optimization software. Computational experiments … Read more

Constructing a Small Compact Binary Model for the Travelling Salesman Problem

A variety of formulations for the Travelling Salesman Problem as Mixed Integer Program have been proposed. They contain either non-binary variables or the number of constraints and variables is large. We want to give a new formulation that consists solely of binary variables; the number of variables and the number of constraints are of order … Read more

A disjunctive convex programming approach to the pollution routing problem

The pollution routing problem (PRP) aims to determine a set of routes and speed over each leg of the routes simultaneously to minimize the total operational and environmental costs. A common approach to solve the PRP exactly is through speed discretization, i.e., assuming that speed over each arc is chosen from a prescribed set of … Read more

Solving the Probabilistic Traveling Salesman Problem by Linearising a Quadratic Approximation

The Probabilistic Traveling Salesman Problem, introduced in 1985 by Jaillet, is one of the fundamental stochastic versions of the Traveling Salesman Problem: After the tour is chosen, each vertex is deleted with given probability 1-p. The eliminated vertices are bypassed which leads to shorter tours. The aim is to minimize the expected tour length. The … Read more

A mean-risk MINLP for transportation network protection

This paper focuses on transportation network protection to hedge against extreme events such as earthquakes. Traditional two-stage stochastic programming has been widely adopted to obtain solutions under a risk-neutral preference through the use of expectations in the recourse function. In reality, decision makers hold different risk preferences. We develop a mean-risk two-stage stochastic programming model … Read more

An ILP-based local search procedure for the VRP with pickups and deliveries

In this paper we address the Vehicle Routing Problem with Pickups and Deliveries (VRPPD), an extension of the classical Vehicle Routing Problem (VRP) where we consider precedences among customers, and develop an Integer Linear Programming (ILP) based local search procedure. We consider the capacitated one-to-one variant, where a particular precedence must be satisfied between pairs … Read more

A cluster-first route-second approach for the Swap Body Vehicle Routing Problem

The Swap Body Vehicle Routing Problem (SB-VRP) is a generalization of the classical Vehicle Routing Problem (VRP) where a particular structure as well as several operational aspects for the trucks composing the fleet are considered. This research has been motivated by the VeRoLog Solver Challenge 2014, organized together by VeRoLog and PTV group, aiming to … Read more

The One-Dimensional Dynamic Dispatch Waves Problem

We study same-day delivery (SDD) distribution systems by formulating the Dynamic Dispatch Wave Problem (DDWP), which models a depot where delivery requests arrive dynamically throughout a service day. At any dispatch epoch (wave), the information available to the decision maker is (1) a set of known, open requests which remain unfulfilled, and (2) a set … Read more

Solving Classical and New Single Allocation Hub Location Problems on Euclidean Data

Transport networks with hub structure organise the exchange of shipments between many sources and sinks. All sources and sinks are connected to a small number of hubs which serve as transhipment points, so that only few, strongly consolidated transport relations exist. While hubs and detours lead to additional costs, the savings from bundling shipments, i.e. … Read more