Two approaches to piecewise affine approximation

The problem of approximation by piecewise affine functions has been studied for several decades (least squares and uniform approximation). If the location of switches from one affine piece to another (knots for univariate approximation) is known the problem is convex and there are several approaches to solve this problem. If the location of such switches … Read more

Stability Regularized Cross-Validation

We revisit the problem of ensuring strong test-set performance via cross-validation. Motivated by the generalization theory literature, we propose a nested k-fold cross- validation scheme that selects hyperparameters by minimizing a weighted sum of the usual cross-validation metric and an empirical model-stability measure. The weight on the stability term is itself chosen via a nested … Read more

A Foundational Perspective for Partitional Clustering on Networks

This study presents a theoretical analysis of partitional clustering on networks. Different versions of the problem are studied considering different assignment schemes (hard and soft) and different objective functions. Cluster centers are not restricted to only the set of nodes, it is assumed that centers can also be at the edges of the network. Four … Read more

A mathematical introduction to SVMs with self-concordant kernel

A derivation of so-called “soft-margin support vector machines with kernel” is presented along with elementary proofs that do not rely on concepts from functional analysis such as Mercer’s theorem or reproducing kernel Hilbert spaces which are frequently cited in this context. The analysis leads to new continuity properties of the kernel functions, in particular a … Read more

Optimization Over Trained Neural Networks: Taking a Relaxing Walk

Besides training, mathematical optimization is also used in deep learning to model and solve formulations over trained neural networks for purposes such as verification, compression, and optimization with learned constraints. However, solving these formulations soon becomes difficult as the network size grows due to the weak linear relaxation and dense constraint matrix. We have seen … Read more

Optimal Low-Rank Matrix Completion: Semidefinite Relaxations and Eigenvector Disjunctions

Low-rank matrix completion consists of computing a matrix of minimal complexity that recovers a given set of observations as accurately as possible. Unfortunately, existing methods for matrix completion are heuristics that, while highly scalable and often identifying high-quality solutions, do not possess any optimality guarantees. We reexamine matrix completion with an optimality-oriented eye. We reformulate … Read more

Bilevel optimization with a multi-objective lower-level problem: Risk-neutral and risk-averse formulations

In this work, we propose different formulations and gradient-based algorithms for deterministic and stochastic bilevel problems with conflicting objectives in the lower level. Such problems have received little attention in the deterministic case and have never been studied from a stochastic approximation viewpoint despite the recent advances in stochastic methods for single-level, bilevel, and multi-objective … Read more

Sparse PCA With Multiple Components

Sparse Principal Component Analysis (sPCA) is a cardinal technique for obtaining combinations of features, or principal components (PCs), that explain the variance of high-dimensional datasets in an interpretable manner. This involves solving a sparsity and orthogonality-constrained convex maximization problem, which is extremely computationally challenging. Most existing works address sparse PCA via methods—such as iteratively computing … Read more

A new sufficient condition for non-convex sparse recovery via weighted $\ell_r\!-\!\ell_1$ minimization

In this letter, we discuss the reconstruction of sparse signals from undersampled data, which belongs to the core content of compressed sensing. A new sufficient condition in terms of the restricted isometry constant (RIC) and restricted orthogonality constant (ROC) is first established for the performance guarantee of recently proposed non-convex weighted $\ell_r-\ell_1$ minimization in recovering … Read more

The Null Space Property of the Weighted $\ell_r-\ell_1$ Minimization

The null space property (NSP), which relies merely on the null space of the sensing matrix column space, has drawn numerous interests in sparse signal recovery. This article studies NSP of the weighted $\ell_r-\ell_1$ minimization. Several versions of NSP of the weighted $\ell_r-\ell_1$ minimization including the weighted $\ell_r-\ell_1$ NSP, the weighted $\ell_r-\ell_1$ stable NSP, the … Read more