Mixed-Integer Nonlinear Optimization for District Heating Network Expansion

We present a mixed-integer nonlinear optimization model for computing the optimal expansion of an existing tree-shaped district heating network given a number of potential new consumers. To this end, we state a stationary and nonlinear model of all hydraulic and thermal effects in the pipeline network as well as nonlinear models for consumers and the … Read more

High Dimensional Three-Periods Locally Ideal MIP Formulations for the UC Problem

The thermal unit commitment (UC) problem often can be formulated as a mixed integer quadratic programming (MIQP), which is difficult to solve efficiently, especially for large-scale instances. The tighter characteristic re-duces the search space, therefore, as a natural conse-quence, significantly reduces the computational burden. In the literature, many tightened formulations for single units with parts … Read more

Modular-topology optimization with Wang tilings: An application to truss structures

Modularity is appealing for solving many problems in optimization. It brings the benefits of manufacturability and reconfigurability to structural optimization, and enables a trade-off between the computational performance of a Periodic Unit Cell (PUC) and the efficacy of non-uniform designs in multi-scale material optimization. Here, we introduce a novel strategy for concurrent minimum-compliance design of … Read more

Mathematical Optimization and Machine Learning for Efficient Urban Traffic

Traffic jams cause economical damage which has been estimated between 10 and 100 billion Euros per year in Germany, also due to inefficient urban traffic. It is currently open how the situation will change with upcoming technological advances in autonomous and electric mobility. On the one hand, autonomous cars may lead to an increased number … Read more

Generation Expansion Planning with Revenue Adequacy Constraints

Generation capacity expansion models have traditionally taken the vantage point of a centralized planner seeking to find cost-optimal generation capacity to reliably meet load over decadal time scales. Often assuming perfectly competitive players, these models attempt to provide guidance for system planners without necessarily ensuring that individual generators are adequately remunerated for their generation, flexibility, … Read more

An MISOCP-Based Solution Approach to the Reactive Optimal Power Flow Problem

In this letter, we present an alternative mixed-integer non-liner programming formulation of the reactive optimal power flow (ROPF) problem. We utilize a mixed-integer second-order cone programming (MISOCP) based approach to find global optimal solutions of the proposed ROPF problem formulation. We strengthen the MISOCP relaxation via the addition of convex envelopes and cutting planes. Computational … Read more

Distributionally Robust Optimization Approaches for a Stochastic Mobile Facility Routing and Scheduling Problem

We study a mobile facility (MF) routing and scheduling problem in which probability distributions of the time-dependent demand for MF services is unknown. To address distributional ambiguity, we propose and analyze two distributionally robust MF routing and scheduling (DMFRS) models that seek to minimize the fixed cost of establishing the MF fleet and maximum expected … Read more

Effectively managing diagnostic tests to monitor the COVID-19 outbreak in Italy

Urged by the outbreak of the COVID-19 in Italy, this study aims at helping to tackle the spread of the disease by resorting to operations research techniques. In particular, we propose a mathematical program to model the problem of establishing how many diagnostic tests the Italian regions must perform in order to maximize the overall … Read more

A mixed-integer linear programming approach for the T-row and the multi-bay facility layout problem

We introduce a new facility layout problem, the so-called T-Row Facility Layout Problem (TRFLP). The TRFLP consists of a set of one-dimensional departments with pairwise transport weights between them and two orthogonal rows which form a T such that departments in different rows cannot overlap. The aim is to find a non-overlapping assignment of the … Read more

Optimization Problems Involving Matrix Multiplication with Applications in Material Science and Biology

We consider optimization problems involving the multiplication of variable matrices to be selected from a given family, which might be a discrete set, a continuous set or a combination of both. Such nonlinear, and possibly discrete, optimization problems arise in applications from biology and material science among others, and are known to be NP-Hard for … Read more