Reliable single allocation hub location problem under hub breakdowns

The design of hub-and-spoke transport networks is a strategic planning problem, as the choice of hub locations has to remain unchanged for long time periods. However, strikes, disasters or traffic breakdown can lead to the unavailability of a hub for a short period of time. Therefore it is important to consider such events already in … Read more

Understanding Deep Neural Networks with Rectified Linear Units

In this paper we investigate the family of functions representable by deep neural networks (DNN) with rectified linear units (ReLU). We give the first-ever polynomial time (in the size of data) algorithm to train a ReLU DNN with one hidden layer to {\em global optimality}. This follows from our complete characterization of the ReLU DNN … Read more

HEURISTIC ALGORITHMS FOR DESIGNING UNIMODULAR CODE SEQUENCES WITH PERFORMANCE GUARANTEES

In this study, we develop heuristic methods to solve unimodular quadratic programming (UQP) approximately, which is known to be NP-hard. UQP-type problems appear naturally in radar waveform design and active sensing applications. In the UQP framework, we optimize a sequence of complex variables with unit modulus by maximizing a quadratic function. To solve the UQP … Read more

Distributionally robust chance constrained optimal power flow with renewables: A conic reformulation

The uncertainty associated with renewable energy sources introduces significant challenges in optimal power flow (OPF) analysis. A variety of new approaches have been proposed that use chance constraints to limit line or bus overload risk in OPF models. Most existing formulations assume that the probability distributions associated with the uncertainty are known a priori or … Read more

A Distance-Limited Continuous Location-Allocation Problem for Spatial Planning of Decentralized Systems

We introduce a new continuous location-allocation problem where the facilities have both a xed opening cost and a coverage distance limitation. The problem might have wide applications especially in the spatial planning of water and/or energy access networks where the coverage distance might be associated with the physical loss constraints. We formulate a mixed integer … Read more

Optimization Algorithms for Data Analysis

We describe the fundamentals of algorithms for minimizing a smooth nonlinear function, and extensions of these methods to the sum of a smooth function and a convex nonsmooth function. Such objective functions are ubiquitous in data analysis applications, as we illustrate using several examples. We discuss methods that make use of gradient (first-order) information about … Read more

Preconditioning PDE-constrained optimization with L^1-sparsity and control constraints

PDE-constrained optimization aims at finding optimal setups for partial differential equations so that relevant quantities are minimized. Including sparsity promoting terms in the formulation of such problems results in more practically relevant computed controls but adds more challenges to the numerical solution of these problems. The needed L^1-terms as well as additional inclusion of box … Read more

Fast approximate solution of large dense linear programs

We show how random projections can be used to solve large-scale dense linear programs approximately. This is a new application of techniques which are now fairly well known in probabilistic algorithms, but have never yet been systematically applied to the fundamental class of Linear Programming. We develop the necessary theoretical framework, and show that this … Read more

Rigorous results in electronic structure calculations

Electronic structure calculations, in particular the computation of the ground state energy, lead to challenging problems in optimization. These problems are of enormous importance in quantum chemistry for calculations of properties of solids and molecules. Minimization methods for computing the ground state energy can be developed by employing a variational approach, where the second-order reduced … Read more

Locally weighted regression models for surrogate-assisted design optimization

Locally weighted regression combines the advantages of polynomial regression and kernel smoothing. We present three ideas for appropriate and effective use of LOcally WEighted Scatterplot Smoothing (LOWESS) models for surrogate optimization. First, a method is proposed to reduce the computational cost of LOWESS models. Second, a local scaling coefficient is introduced to adapt LOWESS models … Read more