Solving Highly Detailed Gas Transport MINLPs: Block Separability and Penalty Alternating Direction Methods

Detailed modeling of gas transport problems leads to nonlinear and nonconvex mixed-integer optimization or feasibility models (MINLPs) because both the incorporation of discrete controls of the network as well as accurate physical and technical modeling is required in order to achieve practical solutions. Hence, ignoring certain parts of the physics model is not valid for … Read more

Regularized monotonic regression

Monotonic (isotonic) Regression (MR) is a powerful tool used for solving a wide range of important applied problems. One of its features, which poses a limitation on its use in some areas, is that it produces a piecewise constant fitted response. For smoothing the fitted response, we introduce a regularization term in the MR formulated … Read more

DESSLib – Benchmark Instances for Optimization of Decentralized Energy Supply Systems

DESSLib (http://www.math2.rwth-aachen.de/DESSLib) provides benchmark instances obtained by real world data for synthesis problems of decentralized energy supply systems (DESS). In this paper, the considered optimization problem is described in detail. For a description of the functions and parameters used to describe the system and equipment, see the documentation found on DESSLib website http://www.math2.rwth-aachen.de/DESSLib. Article Download … Read more

An Adaptive Discretization MINLP Algorithm for Optimal Synthesis of Decentralized Energy Supply Systems

Decentralized energy supply systems (DESS) are highly integrated and complex systems designed to meet time-varying energy demands, e.g., heating, cooling, and electricity. The synthesis problem of DESS addresses combining various types of energy conversion units, choosing their sizing and operations to maximize an objective function, e.g., the net present value. In practice, investment costs and … Read more

The implicit convex feasibility problem and its application to adaptive image denoising

The implicit convex feasibility problem attempts to find a point in the intersection of a finite family of convex sets, some of which are not explicitly determined but may vary. We develop simultaneous and sequential projection methods capable of handling such problems and demonstrate their applicability to image denoising in a specific medical imaging situation. … Read more

Path Constraints in Tychastic and Unscented Optimal Control: Theory, Applications and Experimental Results

In recent papers, we have shown that a Lebesgue-Stieltjes optimal control theory forms the foundations for unscented optimal control. In this paper, we further our results by incorporating uncertain mixed state-control constraints in the problem formulation. We show that the integrated Hamiltonian minimization condition resembles a semi-infinite type mathematical programming problem. The resulting computational difficulties … Read more

Effects of Uncertain Requirements on the Architecture Selection Problem

The problem of identifying a specific design or architecture that allows to satisfy all the system requirements becomes more difficult when uncertainties are taken into account. When a requirement is subject to uncertainty there are a number approaches available to the system engineer, each one with its own benefits and disadvantages. Classical robust optimization is … Read more

pyomo.dae: A Modeling and Automatic Discretization Framework for Optimization with Differential and Algebraic Equations

We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http: //www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, … Read more

Intrinsic Representation of Tangent Vectors and Vector transport on Matrix Manifolds

In Riemannian optimization problems, commonly encountered manifolds are $d$-dimensional matrix manifolds whose tangent spaces can be represented by $d$-dimensional linear subspaces of a $w$-dimensional Euclidean space, where $w > d$. Therefore, representing tangent vectors by $w$-dimensional vectors has been commonly used in practice. However, using $w$-dimensional vectors may be the most natural but may not … Read more

Resource-constrained scheduling with non-constant capacity and non-regular activities

This work is inspired by very challenging issues arising in space logistics. The problem of scheduling a number of activities, in a given time elapse, optimizing the resource exploitation is discussed. The available resources are not constant, as well as the request, relative to each job. The mathematical aspects are illustrated, providing a time-indexed MILP … Read more