A Modeling-based Approach for Non-standard Packing Problems

This chapter examines the problem of packing tetris-like items, orthogonally, with the possibility of rotations, into a convex domain, in the presence of additional conditions. An MILP (Mixed Integer Linear Programming) and an MINLP (Mixed Integer Nonlinear Programming) models, previously studied by the author, are surveyed. An efficient formulation of the objective function, aimed at … Read more

A Traffic Model for the International Space Station: An MIP Approach

The International Space Station poses very challenging issues from the logistic point of view. Its on-orbit stay is to be significantly extended in the near future and ever increasing experimental activity in microgravity is expected, giving rise to a renewed interest in the related optimization aspects. A permanent logistic support is necessary to guarantee its … Read more

Analysis of transformations of linear random-effects models

Assume that a linear random-effects model (LRM) $\by = \bX \bbe + \bve = \bX\bbe+ \bve$ with $\bbe = \bA \bal + \bga$ is transformed as $\bT\by = \bT\bX\bbe + \bT\bve = \bT\bX\bA \bal + \bT\bX\bga + \bT\bve$ by pre-multiplying a given matrix $\bT$. Estimations/predictions of the unknown parameters under the two models are not … Read more

A Non-metric Bilevel Location Problem

We address a bilevel location problem where a leader first decides which facilities to open and their access prices; then, customers make individual decisions minimizing individual costs. In this note we prove that, when access costs do not fulfill metric properties, the problem is NP-hard even if facilities can be opened at no fixed cost. … Read more

Globally Optimized Finite Packings of Arbitrary Size Spheres in R^d

This work discusses the following general packing problem-class: given a finite collection of d-dimensional spheres with arbitrarily chosen radii, find the smallest sphere in R^d that contains the entire collection of these spheres in a non-overlapping arrangement. Generally speaking, analytical solution approaches cannot be expected to apply to this general problem-type, except for very small … Read more

A new algebraic analysis to linear mixed models

This article presents a new investigation to the linear mixed model $\by = \bX \bbe + \bZ\bga + \bve$ with fixed effect $\bX\bbe$ and random effect $\bZ\bga$ under a general assumption via some novel algebraic tools in matrix theory, and reveals a variety of deep and profound properties hidden behind the linear mixed model. We … Read more

Statistical inference and hypotheses testing of risk averse stochastic programs

We study statistical properties of the optimal value and optimal solutions of the Sample Average Approximation of risk averse stochastic problems. Central Limit Theorem type results are derived for the optimal value and optimal solutions when the stochastic program is expressed in terms of a law invariant coherent risk measure. The obtained results are applied … Read more

Nonlinear Regression Analysis by Global Optimization: A Case Study in Space Engineering

The search for a better understanding of complex systems calls for quantitative model development. Within this development process, model fitting to observational data (calibration) often plays an important role. Traditionally, local optimization techniques have been applied to solve nonlinear (as well as linear) model calibration problems numerically: the limitations of such approaches in the nonlinear … Read more

Beating the SDP bound for the floor layout problem: A simple combinatorial idea

For many Mixed-Integer Programming (MIP) problems, high-quality dual bounds can obtained either through advanced formulation techniques coupled with a state-of-the-art MIP solver, or through Semidefinite Programming (SDP) relaxation hierarchies. In this paper, we introduce an alternative bounding approach that exploits the “combinatorial implosion” effect by solving portions of the original problem and aggregating this information … Read more

Strong mixed-integer formulations for the floor layout problem

The floor layout problem (FLP) tasks a designer with positioning a collection of rectangular boxes on a fixed floor in such a way that minimizes total communication costs between the components. While several mixed integer programming (MIP) formulations for this problem have been developed, it remains extremely challenging from a computational perspective. This work takes … Read more