Use of a Biobjective Direct Search Algorithm in the Process Design of Material Science Applications

This work describes the application of a direct search method to the optimization of problems of real industrial interest, namely three new material science applications designed with the FactSage software. The search method is BiMADS, the biobjective version of the mesh adaptive direct search (MADS) algorithm, designed for blackbox optimization. We give a general description … Read more

Approximating the Minimum Hub Cover Problem on Planar Graphs

We study an approximation algorithm with a performance guarantee to solve a new NP-hard optimization problem on planar graphs. The problem, which is referred to as the minimum hub cover problem, has recently been introduced to the literature to improve query processing over large graph databases. Planar graphs also arise in various graph query processing … Read more

Mathematical Programming Models Based on Hub Covers in Graph Query Processing

The use of graph databases for social networks, images, web links, pathways and so on, has been increasing at a fast pace and promotes the need for efficient graph query processing on such databases. In this study, we discuss graph query processing — referred to as graph matching — and an inherent optimization problem known … Read more

The Value of Flexibility in Robust Location-Transportation Problems

This article studies a multi-period capacitated fixed-charge location-transportation problem in which, while the location and capacity of each facility need to be determined immediately, the determination of final production and distribution of products can be delayed until actual orders are received in each period. In contexts where little is known about future demand, robust optimization, … Read more

Solving Power-Constrained Gas Transportation Problems using an MIP-based Alternating Direction Method

We present a solution algorithm for problems from steady-state gas transport optimization. Due to nonlinear and nonconvex physics and engineering models as well as discrete controllability of active network devices, these problems lead to hard nonconvex mixed-integer nonlinear optimization models. The proposed method is based on mixed-integer linear techniques using piecewise linear relaxations of the … Read more

Sequential Threshold Control in Descent Splitting Methods for Decomposable Optimization Problems

We suggest a modification of the descent splitting methods for decomposable composite optimization problems, which maintains the basic convergence properties, but enables one to reduce the computational expenses per iteration and to provide computations in a distributed manner. It consists in making coordinate-wise steps together with a special threshold control. Citation Kazan Federal University, Kazan … Read more

Stochastic Compositional Gradient Descent: Algorithms for Minimizing Compositions of Expected-Value Functions

Classical stochastic gradient methods are well suited for minimizing expected-value objective functions. However, they do not apply to the minimization of a nonlinear function involving expected values or a composition of two expected-value functions, i.e., problems of the form $\min_x \E_v\[f_v\big(\E_w [g_w(x)]\big) \]$. In order to solve this stochastic composition problem, we propose a class … Read more

Linear conic optimization for inverse optimal control

We address the inverse problem of Lagrangian identification based on trajectories in the context of nonlinear optimal control. We propose a general formulation of the inverse problem based on occupation measures and complementarity in linear programming. The use of occupation measures in this context offers several advantages from the theoretical, numerical and statistical points of … Read more

HIPAD – A Hybrid Interior-Point Alternating Direction algorithm for knowledge-based SVM and feature selection

We consider classification tasks in the regime of scarce labeled training data in high dimensional feature space, where specific expert knowledge is also available. We propose a new hybrid optimization algorithm that solves the elastic-net support vector machine (SVM) through an alternating direction method of multipliers in the first phase, followed by an interior-point method … Read more

Semi-definite relaxations for optimal control problems with oscillation and concentration effects

Converging hierarchies of finite-dimensional semi-definite relaxations have been proposed for state-constrained optimal control problems featuring oscillation phenomena, by relaxing controls as Young measures. These semi-definite relaxations were later on extended to optimal control problems depending linearly on the control input and typically featuring concentration phenomena, interpreting the control as a measure of time with a … Read more