A Fair, Sequential Multiple Objective Optimization Algorithm

In multi-objective optimization the objective is to reach a point which is Pareto ecient. However we usually encounter many such points and choosing a point amongst them possesses another problem. In many applications we are required to choose a point having a good spread over all objective functions which is a direct consequence of the … Read more

Learning Circulant Sensing Kernels

In signal acquisition, Toeplitz and circulant matrices are widely used as sensing operators. They correspond to discrete convolutions and are easily or even naturally realized in various applications. For compressive sensing, recent work has used random Toeplitz and circulant sensing matrices and proved their efficiency in theory, by computer simulations, as well as through physical … Read more

A Block Coordinate Descent Method for Regularized Multi-Convex Optimization with Applications to Nonnegative Tensor Factorization and Completion

This paper considers regularized block multi-convex optimization, where the feasible set and objective function are generally non-convex but convex in each block of variables. We review some of its interesting examples and propose a generalized block coordinate descent method. (Using proximal updates, we further allow non-convexity over some blocks.) Under certain conditions, we show that … Read more

Convex computation of the region of attraction of polynomial control systems

We address the long-standing problem of computing the region of attraction (ROA) of a target set (typically a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving a convex linear programming (LP) problem over the … Read more

Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization

In this paper, we study the nonnegative matrix factorization problem under the separability assumption (that is, there exists a cone spanned by a small subset of the columns of the input nonnegative data matrix containing all columns), which is equivalent to the hyperspectral unmixing problem under the linear mixing model and the pure-pixel assumption. We … Read more

A method for weighted projections to the positive definite cone

We study the numerical solution of the problem $\min_{X \ge 0} \|BX-c\|2$, where $X$ is a symmetric square matrix, and $B$ a linear operator, such that $B^*B$ is invertible. With $\rho$ the desired fractional duality gap, we prove $O(\sqrt{m}\log\rho^{-1})$ iteration complexity for a simple primal-dual interior point method directly based on those for linear programs … Read more

A unified mixed-integer programming model for simultaneous fluence weight and aperture optimization in VMAT, Tomotherapy, and Cyberknife

In this paper, we propose and study a unified mixed-integer programming model that simultaneously optimizes fluence weights and multi-leaf collimator (MLC) apertures in the treatment planning optimization of VMAT, Tomotherapy, and CyberKnife. The contribution of our model is threefold: i. Our model optimizes the fluence and MLC apertures simultaneously for a given set of control … Read more

Complexity Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization

We propose a first order interior point algorithm for a class of non-Lipschitz and nonconvex minimization problems with box constraints, which arise from applications in variable selection and regularized optimization. The objective functions of these problems are continuously differentiable typically at interior points of the feasible set. Our algorithm is easy to implement and the … Read more

Optimal management and sizing of energy storage under dynamic pricing for the efficient integration of renewable energy

In this paper, we address the optimal energy storage management and sizing problem in the presence of renewable energy and dynamic pricing. We formulate the problem as a stochastic dynamic programming problem that aims to minimize the long-term average cost of conventional generation used as well as investment in storage, if any, while satisfying all … Read more

Effective Strategies to Teach Operations Research to Non-Mathematics Majors

Operations Research (OR) is the discipline of applying advanced analytical methods to help make better decisions (Horner (2003)). OR is characterized by its broad applicability and its interdisciplinary nature. Currently, in addition to mathematics, many other undergraduate programs such as management sciences, business, economics, electrical engineering, civil engineering, chemical engineering, and related fields, have incorporated … Read more