Measures with zeros in the inverse of their moment matrix

We investigate and discuss when the inverse of a multivariate truncated moment matrix of a measure has zeros in some prescribed entries. We describe precisely which pattern of these zeroes corresponds to independence, namely, the measure having a product structure. A more refined finding is that the key factor forcing a zero entry in this … Read more

Consistency of robust portfolio estimators

It is a matter of common knowledge that traditional Markowitz optimization based on sample means and covariances performs poorly in practice. For this reason, diverse attempts were made to improve performance of portfolio optimization. In this paper, we investigate three popular portfolio selection models built upon classical mean-variance theory. The first model is an extension … Read more

A Penalized Trimmed Squares Method for Deleting Outliers in Robust Regression

We consider the problem of identifying multiple outliers in linear regression models. In robust regression the unusual observations should be removed from the sample in order to obtain better fitting for the rest of the observations. Based on the LTS estimate, we propose a penalized trimmed square estimator PTS, where penalty costs for discarding outliers … Read more

Coordinate and Subspace Optimization Methods for Linear Least Squares with Non-Quadratic Regularization

This work addresses the problem of regularized linear least squares (RLS) with non-quadratic separable regularization. Despite being frequently deployed in many applications, the RLS problem is often hard to solve using standard iterative methods. In a recent work [10], a new iterative method called Parallel Coordinate Descent (PCD) was devised. We provide herein a convergence … Read more

On the Quality of a Semidefinite Programming Bound for Sparse Principal Component Analysis

We examine the problem of approximating a positive, semidefinite matrix $\Sigma$ by a dyad $xx^T$, with a penalty on the cardinality of the vector $x$. This problem arises in sparse principal component analysis, where a decomposition of $\Sigma$ involving sparse factors is sought. We express this hard, combinatorial problem as a maximum eigenvalue problem, in … Read more

Spectral Bounds for Sparse PCA: Exact & Greedy Algorithms

Sparse PCA seeks approximate sparse “eigenvectors” whose projections capture the maximal variance of data. As a cardinality-constrained and non-convex optimization problem, it is NP-hard and yet it is encountered in a wide range of applied fields, from bio-informatics to finance. Recent progress has focused mainly on continuous approximation and convex relaxation of the hard cardinality … Read more

Sparse Covariance Selection via Robust Maximum Likelihood Estimation

We address a problem of covariance selection, where we seek a trade-off between a high likelihood against the number of non-zero elements in the inverse covariance matrix. We solve a maximum likelihood problem with a penalty term given by the sum of absolute values of the elements of the inverse covariance matrix, and allow for … Read more

A Framework for Kernel Regularization with Applications to Protein Clustering

We develop and apply a novel framework which is designed to extract information in the form of a positive definite kernel matrix from possibly crude, noisy, incomplete, inconsistent dissimilarity information between pairs of objects, obtainable in a variety of contexts. Any positive definite kernel defines a consistent set of distances, and the fitted kernel provides … Read more

A Tabu Search Algorithm for Partitioning

We present an original method for partitioning by automatic classi- fication, using the optimization technique of tabu search. The method uses a classical tabu search scheme based on transfers for the minimization of the within variance; it introduces in the tabu list the indicator of the object transfered. This method is compared with two stochastic … Read more

Optimal expected-distance separating halfspace

One recently proposed criterion to separate two datasets in discriminant analysis, is to use a hyperplane which minimises the sum of distances to it from all the misclassified data points. Here all distances are supposed to be measured by way of some fixed norm, while misclassification means lying on the wrong side of the hyperplane, … Read more