Nonlinear Matroid Optimization and Experimental Design

We study the problem of optimizing nonlinear objective functions over matroids presented by oracles or explicitly. Such functions can be interpreted as the balancing of multi-criteria optimization. We provide a combinatorial polynomial time algorithm for arbitrary oracle-presented matroids, that makes repeated use of matroid intersection, and an algebraic algorithm for vectorial matroids. Our work is … Read more

Facet Defining Inequalities among Graph Invariants: the system GraPHedron

We present a new computer system, called GraPHedron, which uses a polyhedral approach to help the user to discover optimal conjectures in graph theory. We define what should be optimal conjectures and propose a formal framework allowing to identify them. Here, graphs with n nodes are viewed as points in the Euclidian space, whose coordinates … Read more

Graph Modeling for Quadratic Assignment Problem Associated with the Hypercube

In the paper we consider the quadratic ssignment problem arising from channel coding in communications where one coefficient matrix is the adjacency matrix of a hypercube in a finite dimensional space. By using the geometric structure of the hypercube, we first show that there exist at least $n$ different optimal solutions to the underlying QAPs. … Read more

Gap, cosum, and product properties of the $\theta’$ bound on the clique number

In a paper published 1978, McEliece, Rodemich and Rumsey improved Lov\’asz’ bound for the Maximum Clique Problem. This strengthening has become well-known under the name Lov\’asz-Schrijver bound and is usually denoted by $\theta’$. This article now deals with situations where this bound is not exact. To provide instances for which the gap between this bound … Read more

Sensor Network Localization, Euclidean Distance Matrix Completions, and Graph Realization

We study Semidefinite Programming, \SDPc relaxations for Sensor Network Localization, \SNLc with anchors and with noisy distance information. The main point of the paper is to view \SNL as a (nearest) Euclidean Distance Matrix, \EDM, completion problem and to show the advantages for using this latter, well studied model. We first show that the current … Read more

On the Lovász theta-number of almost regular graphs with application to Erdös–Rényi graphs

We consider k-regular graphs with loops, and study the Lovász theta-numbers and Schrijver theta’-numbers of the graphs that result when the loop edges are removed. We show that the theta-number dominates a recent eigenvalue upper bound on the stability number due to Godsil and Newman [C.D. Godsil and M.W. Newman. Eigenvalue bounds for independent sets. … Read more

Copositivity cuts for improving SDP bounds on the clique number

Adding cuts based on copositive matrices, we propose to improve Lovász’ bound on the clique number and its tightening introduced by McEliece, Rodemich, Rumsey, and Schrijver. Candidates for cheap and efficient copositivity cuts of this type are obtained from graphs with known clique number. The cost of previously established semidefinite programming bound hierarchies rapidly increases … Read more

The extreme points of QSTAB(G) and its implications

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations w.r.t different concepts. Perfect graphs are, e.g., characterized as precisely those graphs G where the stable set polytope STAB(G) coincides with the clique constraint stable set polytope QSTAB(G). For all imperfect graphs STAB(G) \subset QSTAB(G) holds and, therefore, it is … Read more

Copositive programming motivated bounds on the stability and the chromatic number

The Lovasz theta number of a graph G can be viewed as a semidefinite programming relaxation of the stability number of G. It has recently been shown that a copositive strengthening of this semidefinite program in fact equals the stability number of G. We introduce a related strengthening of the Lovasz theta number toward the … Read more

On forests, stable sets and polyhedras associated with clique partitions

Let $G=(V,E)$ be a simple graph on $n$ nodes. We show how to construct a partial subgraph $D$ of the line graph of $G$ satisfying the identity: $\overline \chi(G)+\alpha(D)=n$, where $\overline \chi(G)$ denotes the minimum number of cliques in a clique partition of $G$ and $\alpha(D)$ denotes the maximum size of a stable set of … Read more