A Branch-and-Cut Algorithm for Discrete Bilevel Linear Programs

We present a branch-and-cut algorithm for solving discrete bilevel linear programs where the upper-level variables are binary and the lower-level variables are either pure integer or pure binary. This algorithm performs local search to find improved bilevel feasible solutions. We strengthen the relaxed node subproblems in the branch-and-cut search tree by generating cuts to eliminate … Read more

The Many Faces of Degeneracy in Conic Optimization

Slater’s condition — existence of a “strictly feasible solution” — is a common assumption in conic optimization. Without strict feasibility, first-order optimality conditions may be meaningless, the dual problem may yield little information about the primal, and small changes in the data may render the problem infeasible. Hence, failure of strict feasibility can negatively impact … Read more

Warm-start of interior point methods for second order cone optimization via rounding over optimal Jordan frames

Interior point methods (IPM) are the most popular approaches to solve Second Order Cone Optimization (SOCO) problems, due to their theoretical polynomial complexity and practical performance. In this paper, we present a warm-start method for primal-dual IPMs to reduce the number of IPM steps needed to solve SOCO problems that appear in a Branch and … Read more

Parallel Solvers for Mixed Integer Linear Optimization

In this article, we provide an overview of the current state of the art with respect to solution of mixed integer linear optimization problems (MILPS) in parallel. Sequential algorithms for solving MILPs have improved substantially in the last two decades and commercial MILP solvers are now considered effective off-the-shelf tools for optimization. Although concerted development … Read more

Combinatorial Optimization Problems in Engineering Applications

This paper deals with several combinatorial optimization problems. The most challenging such problem is the quadratic assignment problem. It is considered in both two dimensions (QAP) and in three dimensions (Q3AP) and in the context of communication engineering. Semidefinite relaxations are used to derive lower bounds for the optimum while heuristics are applied to either … Read more

A Branch-and-Cut Algorithm for Mixed Integer Bilevel Linear Optimization Problems and Its Implementation

In this paper, we describe an algorithmic framework for solving mixed integer bilevel linear optimization problems (MIBLPs) by a generalized branch-and-cut approach. The framework presented merges features from existing algorithms (for both traditional mixed integer linear optimization and MIBLPs) with new techniques to produce a flexible and robust framework capable of solving a wide range … Read more

A Novel Approach for Solving Convex Problems with Cardinality Constraints

In this paper we consider the problem of minimizing a convex differentiable function subject to sparsity constraints. Such constraints are non-convex and the resulting optimization problem is known to be hard to solve. We propose a novel generalization of this problem and demonstrate that it is equivalent to the original sparsity-constrained problem if a certain … Read more

Dantzig Wolfe decomposition and objective function convexification for binary quadratic problems: the cardinality constrained quadratic knapsack case

The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig-Wolfe decomposition and Quadratic Convex Reformulation principles. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We show that … Read more

On Matroid Parity and Matching Polytopes

The matroid parity (MP) problem is a powerful (and NP-hard) extension of the matching problem. Whereas matching polytopes are well understood, little is known about MP polytopes. We prove that, when the matroid is laminar, the MP polytope is affinely congruent to a perfect b-matching polytope. From this we deduce that, even when the matroid … Read more

An Augmented Lagrangian Proximal Alternating Method for Sparse Discrete Optimization Problems

In this paper, an augmented Lagrangian proximal alternating (ALPA) method is proposed for two class of large-scale sparse discrete constrained optimization problems in which a sequence of augmented Lagrangian subproblems are solved by utilizing proximal alternating linearized minimization framework and sparse projection techniques. Under the Mangasarian-Fromovitz and the basic constraint qualification, we show that any … Read more