On the hop-constrained survivable network design problem with reliable edges

In this paper, we study the hop-constrained survivable network design problem with reliable edges. Given a graph with non-negative edge weights and node pairs Q, the hop-constrained survivable network design problem consists of constructing a minimum weight set of edges so that the induced subgraph contains at least K edge-disjoint paths containing at most L … Read more

Simultaneous approximation of multi-criteria submodular function maximization

Recently there has been intensive interest on approximation of the NP-hard submodular maximization problem due to their theoretical and practical significance. In this work, we extend this line of research by focusing on the simultaneous approximation of multiple submodular function maximization. We address existence and nonexistence results for both deterministic and randomized approximation when the … Read more

Exact Algorithms for Combinatorial Optimization Problems with Submodular Objective Functions

Many combinatorial optimization problems have natural formulations as submodular minimization problems over well-studied combinatorial structures. A standard approach to these problems is to linearize the objective function by introducing new variables and constraints, yielding an extended formulation. We propose two new approaches for constrained submodular minimization problems. The first is a linearization approach that requires … Read more

Flow shop scheduling with peak power consumption constraints

We study scheduling as a means to address the increasing energy concerns in manufacturing enterprises. In particular, we consider a flow shop scheduling problem with a restriction on peak power consumption, in addition to the traditional time-based objectives. We investigate both mathematical programming and combinatorial approaches to this scheduling problem, and test our approaches with … Read more

Complexity of the positive semidefinite matrix completion problem with a rank constraint

We consider the decision problem asking whether a partial rational symmetric matrix with an all-ones diagonal can be completed to a full positive semidefinite matrix of rank at most $k$. We show that this problem is $\NP$-hard for any fixed integer $k\ge 2$. Equivalently, for $k\ge 2$, it is $\NP$-hard to test membership in the … Read more

A Dynamic Programming Heuristic for the Quadratic Knapsack Problem

It is well known that the standard (linear) knapsack problem can be solved exactly by dynamic programming in O(nc) time, where n is the number of items and c is the capacity of the knapsack. The quadratic knapsack problem, on the other hand, is NP-hard in the strong sense, which makes it unlikely that it … Read more

Compact formulations of the Steiner traveling salesman problem and related problems

The Steiner Traveling Salesman Problem (STSP) is a variant of the Traveling Salesman Problem (TSP) that is particularly suitable when dealing with sparse networks, such as road networks. The standard integer programming formulation of the STSP has an exponential number of constraints, just like the standard formulation of the TSP. On the other hand, there … Read more

An aggressive reduction scheme for the simple plant location problem

Pisinger et al. introduced the concept of `aggressive reduction’ for large-scale combinatorial optimisation problems. The idea is to spend much time and effort in reducing the size of the instance, in the hope that the reduced instance will then be small enough to be solved by an exact algorithm. We present an aggressive reduction scheme … Read more

A competitive genetic algorithm for single row facility layout

The single row facility layout is the NP-Hard problem of arranging facilities with given lengths on a line, so as to minimize the weighted sum of the distances between all pairs of facilities. Owing to the computational complexity of the problem, researchers have developed several heuristics to obtain good quality solutions. In this paper, we … Read more

Strongly Polynomial Primal-Dual Algorithms for Concave Cost Combinatorial Optimization Problems

We introduce an algorithm design technique for a class of combinatorial optimization problems with concave costs. This technique yields a strongly polynomial primal-dual algorithm for a concave cost problem whenever such an algorithm exists for the fixed-charge counterpart of the problem. For many practical concave cost problems, the fixed-charge counterpart is a well-studied combinatorial optimization … Read more