Nonmonotone GRASP

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications … Read more

Generating subtour constraints for the TSP from pure integer solutions

The traveling salesman problem (TSP) is one of the most prominent combinatorial optimization problems. Given a complete graph G = (V, E) and nonnegative real edge distances d, the TSP asks for a shortest tour through all vertices with respect to the distances d. The method of choice for solving the TSP to optimality is … Read more

A Trust Region Method for the Solution of the Surrogate Dual in Integer Programming

We propose an algorithm for solving the surrogate dual of a mixed integer program. The algorithm uses a trust region method based on a piecewise affine model of the dual surrogate value function. A new and much more flexible way of updating bounds on the surrogate dual’s value is proposed, which numerical experiments prove to … Read more

A Branch-and-Bound Algorithm for the Close-Enough Traveling Salesman Problem

This paper deals with the Close-Enough Traveling Salesman Problem (CETSP). In the CETSP, rather than visiting the vertex (customer) itself, the salesman must visit a specific region containing such vertex. To solve this problem, we propose a simple yet effective exact algorithm, based on Branch-and-Bound and Second Order Cone Programming (SOCP). The proposed algorithm was … Read more

Reclaimer Scheduling: Complexity and Algorithms

We study a number of variants of an abstract scheduling problem inspired by the scheduling of reclaimers in the stockyard of a coal export terminal. We analyze the complexity of each of the variants, providing complexity proofs for some and polynomial algorithms for others. For one, especially interesting variant, we also develop a constant factor … Read more

Approximating Convex Functions By Non-Convex Oracles Under The Relative Noise Model

We study succinct approximation of functions that have noisy oracle access. Namely, construction of a succinct representation of a function, given oracle access to an L-approximation of the function, rather than to the function itself. Specifically, we consider the question of the succinct representation of an approximation of a convex function v that cannot be … Read more

Scheduling the Tasks of Two Agents with a Central Selection Mechanism

We address a class of deterministic scheduling problems in which two agents compete for the usage of a single machine. The agents have their own objective functions and submit in each round an arbitrary, unprocessed task from their buffer for possible selection. In each round the smaller of the two submitted tasks is chosen and … Read more

Eigenvalue, Quadratic Programming, and Semidefinite Programming Relaxations for a Cut Minimization Problem

We consider the problem of partitioning the node set of a graph into $k$ sets of given sizes in order to \emph{minimize the cut} obtained using (removing) the $k$-th set. If the resulting cut has value $0$, then we have obtained a vertex separator. This problem is closely related to the graph partitioning problem. In … Read more

Directional Sensor Control: Heuristic Approaches

We study the problem of controlling multiple 2-D directional sensors while maximizing an objective function based on the information gain corresponding to multiple target locations. We assume a joint prior Gaussian distribution for the target locations. A sensor generates a (noisy) measurement of a target only if the target lies within the field-of-view of the … Read more

EXPLOITING SYMMETRY IN COPOSITIVE PROGRAMS VIA SEMIDEFINITE HIERARCHIES

Copositive programming is a relative young field which has evolved into a highly active research area in mathematical optimization. An important line of research is to use semidefinite programming to approximate conic programming over the copositive cone. Two major drawbacks of this approach are the rapid growth in size of the resulting semidefinite programs, and … Read more