A Dynamic Programming Heuristic for the Quadratic Knapsack Problem

It is well known that the standard (linear) knapsack problem can be solved exactly by dynamic programming in O(nc) time, where n is the number of items and c is the capacity of the knapsack. The quadratic knapsack problem, on the other hand, is NP-hard in the strong sense, which makes it unlikely that it … Read more

Compact formulations of the Steiner traveling salesman problem and related problems

The Steiner Traveling Salesman Problem (STSP) is a variant of the Traveling Salesman Problem (TSP) that is particularly suitable when dealing with sparse networks, such as road networks. The standard integer programming formulation of the STSP has an exponential number of constraints, just like the standard formulation of the TSP. On the other hand, there … Read more

An aggressive reduction scheme for the simple plant location problem

Pisinger et al. introduced the concept of `aggressive reduction’ for large-scale combinatorial optimisation problems. The idea is to spend much time and effort in reducing the size of the instance, in the hope that the reduced instance will then be small enough to be solved by an exact algorithm. We present an aggressive reduction scheme … Read more

A competitive genetic algorithm for single row facility layout

The single row facility layout is the NP-Hard problem of arranging facilities with given lengths on a line, so as to minimize the weighted sum of the distances between all pairs of facilities. Owing to the computational complexity of the problem, researchers have developed several heuristics to obtain good quality solutions. In this paper, we … Read more

Strongly Polynomial Primal-Dual Algorithms for Concave Cost Combinatorial Optimization Problems

We introduce an algorithm design technique for a class of combinatorial optimization problems with concave costs. This technique yields a strongly polynomial primal-dual algorithm for a concave cost problem whenever such an algorithm exists for the fixed-charge counterpart of the problem. For many practical concave cost problems, the fixed-charge counterpart is a well-studied combinatorial optimization … Read more

A Constructive Proof of the Existence of a Utility in Revealed Preference Theory

Within the context of the standard model of rationality within economic modelling we show the existence of a utility function that rationalises a demand correspondence, hence completely characterizes the associated preference structure, by taking a dense demand sample. This resolves the problem of revealed preferences under some very mild assumptions on the demand correspondence which … Read more

Improved approximation algorithms for the facility location problems with linear/submodular penalty

We consider the facility location problem with submodular penalty (FLPSP) and the facility location problem with linear penalty (FLPLP), two extensions of the classical facility location problem (FLP). First, we introduce a general algorithmic framework for a class of covering problems with submodular penalty, extending the recent result of Geunes et al. [12] with linear … Read more

Exact and heuristic approaches to the budget-constrained dynamic uncapacitated facility location-network design problem

Facility location-network design problems seek to simultaneously determine the locations of fa- cilities and the design of the network connecting the facilities so as to best serve a set of clients accessing the facilities via the network. Here we study a dynamic (multi-period) version of the problem, subject to a budget constraint limiting the investment … Read more

Separable Concave Optimization Approximately Equals Piecewise-Linear Optimization

We study the problem of minimizing a nonnegative separable concave function over a compact feasible set. We approximate this problem to within a factor of 1+epsilon by a piecewise-linear minimization problem over the same feasible set. Our main result is that when the feasible set is a polyhedron, the number of resulting pieces is polynomial … Read more

Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods

The single row facility layout problem (SRFLP) is the problem of arranging facilities with given lengths on a line, while minimizing the weighted sum of the distances between all pairs of facilities. The problem is NP-hard. In this paper, we present two tabu search implementations, one involving an exhaustive search of the 2-opt neighborhood and … Read more