Dual Spectral Projected Gradient Method for Generalized Log-det Semidefinite Programming

Log-det semidefinite programming (SDP) problems are optimization problems that often arise from Gaussian graphic models. A log-det SDP problem with an l1-norm term has been examined in many methods, and the dual spectral projected gradient (DSPG) method by Nakagaki et al.~in 2020 is designed to efficiently solve the dual problem of the log-det SDP by … Read more

Universal subgradient and proximal bundle methods for convex and strongly convex hybrid composite optimization

This paper develops two parameter-free methods for solving convex and strongly convex hybrid composite optimization problems, namely, a composite subgradient type method and a proximal bundle type method. Both functional and stationary complexity bounds for the two methods are established in terms of the unknown strong convexity parameter. To the best of our knowledge, the … Read more

Generalized Ellipsoids

We introduce a family of symmetric convex bodies called generalized ellipsoids of degree \(d\) (GE-\(d\)s), with ellipsoids corresponding to the case of \(d=0\). Generalized ellipsoids (GEs) retain many geometric, algebraic, and algorithmic properties of ellipsoids. We show that the conditions that the parameters of a GE must satisfy can be checked in strongly polynomial time, … Read more

On the strength of Burer’s lifted convex relaxation to quadratic programming with ball constraints

We study quadratic programs with m ball constraints, and the strength of a lifted convex relaxation for it recently proposed by Burer (2024). Burer shows this relaxation is exact when m=2. For general m, Burer (2024) provides numerical evidence that this lifted relaxation is tighter than the Kronecker product based Reformulation Linearization Technique (RLT) inequalities … Read more

A combinatorial approach to Ramana’s exact dual for semidefinite programming

Thirty years ago, in a seminal paper Ramana derived an exact dual for Semidefinite Programming (SDP). Ramana’s dual has the following remarkable features: i) it assumes feasibility of the primal, but it does not make any regularity assumptions, such as strict feasibility ii) its optimal value is the same as the optimal value of the … Read more

A Facial Reduction Algorithm for Standard Spectrahedra

Facial reduction is a pre-processing method aimed at reformulating a problem to ensure strict feasibility. The importance of constructing a robust model is widely recognized in the literature, and facial reduction has emerged an attractive approach for achieving robustness. In this note, we outline a facial reduction algorithm for a standard spectrahedra, the intersection of … Read more

A Subgradient Projection Method with Outer Approximation for Solving Semidefinite Programming Problems

We explore the combination of subgradient projection with outer approximation to solve semidefinite programming problems. We compare several ways to construct outer approximations using the problem structure. The resulting approach enjoys the strengths of both subgradient projection and outer approximation methods. Preliminary computational results on the semidefinite programming relaxations of graph partitioning and max-cut show … Read more

Projection onto hyperbolicity cones and beyond: a dual Frank-Wolfe approach

We discuss the problem of projecting a point onto an arbitrary hyperbolicity cone from both theoretical and numerical perspectives. While hyperbolicity cones are furnished with a generalization of the notion of eigenvalues, obtaining closed form expressions for the projection operator as in the case of semidefinite matrices is an elusive endeavour. To address that we … Read more

Composite optimization models via proximal gradient method with a novel enhanced adaptive stepsize

We first consider the convex composite optimization models with the local Lipschitzness condition imposed on the gradient of the differentiable term. The classical proximal gradient method will be studied with our novel enhanced adaptive stepsize selection. To obtain the convergence of the proposed algorithm, we establish a sufficient decrease type inequality associated with our new … Read more

Recognizing weighted means in geodesic spaces

Geodesic metric spaces support a variety of averaging constructions for given finite sets. Computing such averages has generated extensive interest in diverse disciplines. Here we consider the inverse problem of recognizing computationally whether or not a given point is such an average, exactly or approximately. In nonpositively curved spaces, several averaging notions, including the usual … Read more