An inertial alternating direction method of multipliers

In the context of convex optimization problems in Hilbert spaces, we induce inertial effects into the classical ADMM numerical scheme and obtain in this way so-called inertial ADMM algorithms, the convergence properties of which we investigate into detail. To this aim we make use of the inertial version of the Douglas-Rachford splitting method for monotone … Read more

On the Direct Extension of ADMM for Multi-block Separable Convex Programming and Beyond: From Variational Inequality Perspective

When the alternating direction method of multipliers (ADMM) is extended directly to a multi-block separable convex minimization model whose objective function is in form of more than two functions without coupled variables, it was recently shown that the convergence is not guaranteed. This fact urges to develop efficient algorithms that can preserve completely the numerical … Read more

Finding the largest low-rank clusters with Ky Fan 2-k-norm and l1-norm

We propose a convex optimization formulation with the Ky Fan 2-k-norm and l1-norm to fi nd k largest approximately rank-one submatrix blocks of a given nonnegative matrix that has low-rank block diagonal structure with noise. We analyze low-rank and sparsity structures of the optimal solutions using properties of these two matrix norms. We show that, under … Read more

Intermediate gradient methods for smooth convex problems with inexact oracle

Between the robust but slow (primal or dual) gradient methods and the fast but sensitive to errors fast gradient methods, our goal in this paper is to develop first-order methods for smooth convex problems with intermediate speed and intermediate sensitivity to errors. We develop a general family of first-order methods, the Intermediate Gradient Method (IGM), … Read more

First-order methods with inexact oracle: the strongly convex case

The goal of this paper is to study the effect of inexact first-order information on the first-order methods designed for smooth strongly convex optimization problems. We introduce the notion of (delta,L,mu)-oracle, that can be seen as an extension of the inexact (delta,L)-oracle previously introduced, taking into account strong convexity. We consider different examples of (delta,L,mu)-oracle: … Read more

Parallel Multi-Block ADMM with o(1/k) Convergence

This paper introduces a parallel and distributed extension to the alternating direction method of multipliers (ADMM). The algorithm decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This Jacobian-type algorithm is well suited for distributed computing and is particularly attractive for solving certain large-scale problems. This paper introduces … Read more

Accelerated Schemes For A Class of Variational Inequalities

We propose a novel method, namely the accelerated mirror-prox (AMP) method, for computing the weak solutions of a class of deterministic and stochastic monotone variational inequalities (VI). The main idea of this algorithm is to incorporate a multi-step acceleration scheme into the mirror-prox method. For both deterministic and stochastic VIs, the developed AMP method computes … Read more

A Family of Subgradient-Based Methods for Convex Optimization Problems in a Unifying Framework

We propose a new family of subgradient- and gradient-based methods which converges with optimal complexity for convex optimization problems whose feasible region is simple enough. This includes cases where the objective function is non-smooth, smooth, have composite/saddle structure, or are given by an inexact oracle model. We unified the way of constructing the subproblems which … Read more

Forward-backward truncated Newton methods for convex composite optimization

This paper proposes two proximal Newton-CG methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a a reformulation of the original nonsmooth problem as the unconstrained minimization of a continuously differentiable function, namely the forward-backward envelope (FBE). The first algorithm is based on a standard line search strategy, whereas the … Read more

Joint Variable Selection for Data Envelopment Analysis via Group Sparsity

This study develops a data-driven group variable selection method for data envelopment analysis (DEA), a non-parametric linear programming approach to the estimation of production frontiers. The proposed method extends the group Lasso (least absolute shrinkage and selection operator) designed for variable selection on (often predefined) groups of variables in linear regression models to DEA models. … Read more