Active strict saddles in nonsmooth optimization

We introduce a geometrically transparent strict saddle property for nonsmooth functions. This property guarantees that simple proximal algorithms on weakly convex problems converge only to local minimizers, when randomly initialized. We argue that the strict saddle property may be a realistic assumption in applications, since it provably holds for generic semi-algebraic optimization problems. Article Download … Read more

A subspace-accelerated split Bregman method for sparse data recovery with joint l1-type regularizers

We propose a subspace-accelerated Bregman method for the linearly constrained minimization of functions of the form f(u)+tau_1 ||u||_1 + tau_2 ||D*u||_1, where f is a smooth convex function and D represents a linear operator, e.g. a finite difference operator, as in anisotropic Total Variation and fused-lasso regularizations. Problems of this type arise in a wide … Read more

A Distributed Quasi-Newton Algorithm for Primal and Dual Regularized Empirical Risk Minimization

We propose a communication- and computation-efficient distributed optimization algorithm using second-order information for solving empirical risk minimization (ERM) problems with a nonsmooth regularization term. Our algorithm is applicable to both the primal and the dual ERM problem. Current second-order and quasi-Newton methods for this problem either do not work well in the distributed setting or … Read more

A robust method based on LOVO functions for solving least squares problems

The robust adjustment of nonlinear models to data is considered in this paper. When data comes from real experiments, it is possible that measurement errors cause the appearance of discrepant values, which should be ignored when adjusting models to them. This work presents a Lower Order-value Optimization (LOVO) version of the Levenberg-Marquardt algorithm, which is … Read more

Deriving Solution Value Bounds from the ADMM

This short paper describes a simple subgradient-based techniques for deriving bounds on the optimal solution value when using the ADMM to solve convex optimization problems. The technique requires a bound on the magnitude of some optimal solution vector, but is otherwise completely general. Some computational examples using LASSO problems demonstrate that the technique can produce … Read more

An inexact augmented Lagrangian method for nonsmooth optimization on Riemannian manifold

We consider a nonsmooth optimization problem on Riemannian manifold, whose objective function is the sum of a differentiable component and a nonsmooth convex function. We propose a manifold inexact augmented Lagrangian method (MIALM) for the considered problem. The problem is reformulated to a separable form. By utilizing the Moreau envelope, we get a smoothing subproblem … Read more

An Oblivious Ellipsoid Algorithm for Solving a System of (In)Feasible Linear Inequalities

The ellipsoid algorithm is a fundamental algorithm for computing a solution to the system of m linear inequalities in n variables (P) when its set of solutions has positive volume. However, when (P) is infeasible, the ellipsoid algorithm has no mechanism for proving that (P) is infeasible. This is in contrast to the other two … Read more

Continuous selections of solutions for locally Lipschitzian equations

This paper answers in affirmative the long-standing question of nonlinear analysis, concerning the existence of a continuous single-valued local selection of the right inverse to a locally Lipschitzian mapping. Moreover, we develop a much more general result, providing conditions for the existence of a continuous single-valued selection not only locally, but rather on any given … Read more

Stochastic generalized gradient methods for training nonconvex nonsmooth neural networks

The paper observes a similarity between the stochastic optimal control of discrete dynamical systems and the learning multilayer neural networks. It focuses on contemporary deep networks with nonconvex nonsmooth loss and activation functions. The machine learning problems are treated as nonconvex nonsmooth stochastic optimization problems. As a model of nonsmooth nonconvex dependences, the so-called generalized … Read more

Generalized Gradients in Problems of Dynamic Optimization, Optimal Control, and Machine Learning

In this work, nonconvex nonsmooth problems of dynamic optimization, optimal control in discrete time (including feedback control), and machine learning are considered from a common point of view. An analogy is observed between tasks of controlling discrete dynamic systems and training multilayer neural networks with nonsmooth target function and connections. Methods for calculating generalized gradients … Read more