Parallel Space Decomposition of the Mesh Adaptive Direct Search algorithm

This paper describes a parallel space decomposition PSD technique for the mesh adaptive direct search MADS algorithm. MADS extends a generalized pattern search for constrained nonsmooth optimization problems. The objective of the present work is to obtain good solutions to larger problems than the ones typically solved by MADS. The new method PSD-MADS is an … Read more

OrthoMADS: A deterministic MADS instance with orthogonal directions

he purpose of this paper is to introduce a new way of choosing directions for the mesh adaptive direct search (Mads) class of algorithms. The advantages of this new OrthoMads instantiation of Mads are that the polling directions are chosen deterministically, ensuring that the results of a given run are repeatable, and that they are … Read more

A Newton-CG Augmented Lagrangian Method for Semidefinite Programming

We consider a Newton-CG augmented Lagrangian method for solving semidefinite programming (SDP) problems from the perspective of approximate semismooth Newton methods. In order to analyze the rate of convergence of our proposed method, we characterize the Lipschitz continuity of the corresponding solution mapping at the origin. For the inner problems, we show that the positive … Read more

Primal interior point method for minimization of generalized minimax functions

In this report, we propose a primal interior-point method for large sparse generalized minimax optimization. After a short introduction, where the problem is stated, we introduce the basic equations of the Newton method applied to the KKT conditions and propose a primal interior-point method. Next we describe the basic algorithm and give more details concerning … Read more

Convex Optimization Methods for Dimension Reduction and Coefficient Estimation in Multivariate Linear Regression

In this paper, we study convex optimization methods for computing the trace norm regularized least squares estimate in multivariate linear regression. The so-called factor estimation and selection (FES) method, recently proposed by Yuan et al. [17], conducts parameter estimation and factor selection simultaneously and have been shown to enjoy nice properties in both large and … Read more

LASSO-Patternsearch Algorithm with Application to Ophthalmology and Genomic Data

The LASSO-Patternsearch algorithm is proposed as a two-step method to identify clusters or patterns of multiple risk factors for outcomes of interest in demographic and genomic studies. The predictor variables are dichotomous or can be coded as dichotomous. Many diseases are suspected of having multiple interacting risk factors acting in concert, and it is of … Read more

Generating set search methods for piecewise smooth problems

We consider a direct search approach for solving nonsmooth minimization problems where the objective function is locally Lipschitz continuous and piecewise continuously differentiable on a finite family of polyhedra. A generating set search method is proposed, which is named “structured” because the structure of the set of nondifferentiability near the current iterate is exploited to … Read more

Properties of a Cutting Plane Method for Semidefinite Programming

We analyze the properties of an interior point cutting plane algorithm that is based on a semi-infinite linear formulation of the dual semidefinite program. The cutting plane algorithm approximately solves a linear relaxation of the dual semidefinite program in every iteration and relies on a separation oracle that returns linear cutting planes. We show that … Read more

Graph Implementations for Nonsmooth Convex Programs

We describe graph implementations, a generic method for representing a convex function via its epigraph, described in a disciplined convex programming framework. This simple and natural idea allows a very wide variety of smooth and nonsmooth convex programs to be easily specified and efficiently solved, using interior-point methods for smooth or cone convex programs. CitationTo … Read more

Local convergence for alternating and averaged nonconvex projections

The idea of a finite collection of closed sets having “strongly regular intersection” at a given point is crucial in variational analysis. We show that this central theoretical tool also has striking algorithmic consequences. Specifically, we consider the case of two sets, one of which we assume to be suitably “regular” (special cases being convex … Read more