Variational Theory and Algorithms for a Class of Asymptotically Approachable Nonconvex Problems

We investigate a class of composite nonconvex functions, where the outer function is the sum of univariate extended-real-valued convex functions and the inner function is the limit of difference-of-convex functions. A notable feature of this class is that the inner function may fail to be locally Lipschitz continuous. It covers a range of important yet … Read more

A new single-layer inverse-free fixed-time dynamical system for absolute value equations

In this technical note, a novel single-layer inverse-free fixed-time dynamical system (SIFDS) is proposed to address absolute value equations. The proposed SIFDS directly employs coefficient matrix and absolute value equation function that aims at circumventing matrix inverse operation and achieving fixed-time convergence. The equilibria of the proposed SIFDS is proved to be the unique solution … Read more

Behavior of Newton-type methods near critical solutions of nonlinear equations with semismooth derivatives

Having in mind singular solutions of smooth reformulations of complementarity problems, arising unavoidably when the solution in question violates strict complementarity, we study the behavior of Newton-type methods near singular solutions of nonlinear equations, assuming that the operator of the equation possesses a strongly semismooth derivative, but is not necessarily twice differentiable. These smoothness restrictions … Read more

Searching for Optimal Per-Coordinate Step-sizes with Multidimensional Backtracking

The backtracking line-search is an effective technique to automatically tune the step-size in smooth optimization. It guarantees similar performance to using the theoretically optimal step-size. Many approaches have been developed to instead tune per-coordinate step-sizes, also known as diagonal preconditioners, but none of the existing methods are provably competitive with the optimal per-coordinate stepsizes. We … Read more

Adaptive Importance Sampling Based Surrogation Methods for Bayesian Hierarchical Models, via Logarithmic Integral Optimization

We explore Maximum a Posteriori inference of Bayesian Hierarchical Models (BHMs) with intractable normalizers, which are increasingly prevalent in contemporary applications and pose computational challenges when combined with nonconvexity and nondifferentiability. To address these, we propose the Adaptive Importance Sampling-based Surrogation method, which efficiently handles nonconvexity and nondifferentiability while improving the sampling approximation of the … Read more

Asynchronous Iterations in Optimization: New Sequence Results and Sharper Algorithmic Guarantees

We introduce novel convergence results for asynchronous iterations that appear in the analysis of parallel and distributed optimization algorithms. The results are simple to apply and give explicit estimates for how the degree of asynchrony impacts the convergence rates of the iterates. Our results shorten, streamline and strengthen existing convergence proofs for several asynchronous optimization … Read more

Learning in Inverse Optimization: Incenter Cost, Augmented Suboptimality Loss, and Algorithms

In Inverse Optimization (IO), an expert agent solves an optimization problem parametric in an exogenous signal. From a learning perspective, the goal is to learn the expert’s cost function given a dataset of signals and corresponding optimal actions. Motivated by the geometry of the IO set of consistent cost vectors, we introduce the “incenter” concept, … Read more

The complexity of first-order optimization methods from a metric perspective

A central tool for understanding first-order optimization algorithms is the Kurdyka-Lojasiewicz inequality. Standard approaches to such methods rely crucially on this inequality to leverage sufficient decrease conditions involving gradients or subgradients. However, the KL property fundamentally concerns not subgradients but rather “slope”, a purely metric notion. By highlighting this view, and avoiding any use of … Read more

First-Order Methods for Nonsmooth Nonconvex Functional Constrained Optimization with or without Slater Points

Constrained optimization problems where both the objective and constraints may be nonsmooth and nonconvex arise across many learning and data science settings. In this paper, we show a simple first-order method finds a feasible, ϵ-stationary point at a convergence rate of O(ϵ−4) without relying on compactness or Constraint Qualification (CQ). When CQ holds, this convergence is measured by … Read more

A New Inexact Proximal Linear Algorithm with Adaptive Stopping Criteria for Robust Phase Retrieval

This paper considers the robust phase retrieval problem, which can be cast as a nonsmooth and nonconvex optimization problem. We propose a new inexact proximal linear algorithm with the subproblem being solved inexactly. Our contributions are two adaptive stopping criteria for the subproblem. The convergence behavior of the proposed methods is analyzed. Through experiments on … Read more