The Convex Geometry of Linear Inverse Problems

In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees … Read more

On reformulations of nonconvex quadratic programs over convex cones by set-semidefinite constraints

The well-known result stating that any non-convex quadratic problem over the nonnegative orthant with some additional linear and binary constraints can be rewritten as linear problem over the cone of completely positive matrices (Burer, 2009) is generalized by replacing the nonnegative orthant with an arbitrary closed convex cone. This set-semidefinite representation result implies new semidefinite … Read more

From convergence principles to stability and optimality conditions

We show in a rather general setting that Hoelder and Lipschitz stability properties of solutions to variational problems can be characterized by convergence of more or less abstract iteration schemes. Depending on the principle of convergence, new and intrinsic stability conditions can be derived. Our most abstract models are (multi-) functions on complete metric spaces. … Read more

A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality

The principle underlying this paper is the basic observation that the problem of simultaneously solving a large class of composite monotone inclusions and their duals can be reduced to that of finding a zero of the sum of a maximally monotone operator and a linear skew-adjoint operator. An algorithmic framework is developed for solving this … Read more

Reliable solution of convex quadratic programs with parametric active set methods

Parametric Active Set Methods (PASM) are a relatively new class of methods to solve convex Quadratic Programming (QP) problems. They are based on tracing the solution along a linear homotopy between a QP with known solution and the QP to be solved. We explicitly identify numerical challenges in PASM and develop strategies to meet these … Read more

A Parallel Inertial Proximal Optimization Method

The Douglas-Rachford algorithm is a popular iterative method for finding a zero of a sum of two maximal monotone operators defined on a Hilbert space. In this paper, we propose an extension of this algorithm including inertia parameters and develop parallel versions to deal with the case of a sum of an arbitrary number of … Read more

First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints

In this paper we consider a mathematical program with semidefinite cone complementarity constraints (SDCMPCC). Such a problem is a matrix analogue of the mathematical program with (vector) complementarity constraints (MPCC) and includes MPCC as a special case. We derive explicit expressions for the strong-, Mordukhovich- and Clarke- (S-, M- and C-)stationary conditions and give constraint … Read more

A contraction method with implementable proximal regularization for linearly constrained convex programming

The proximal point algorithm (PPA) is classical, and it is implicit in the sense that the resulting proximal subproblems may be as difficult as the original problem. In this paper, we show that with appropriate choices of proximal parameters, the application of PPA to the linearly constrained convex programming can result in easy proximal subproblems. … Read more

Efficient Block-coordinate Descent Algorithms for the Group Lasso

We present two algorithms to solve the Group Lasso problem [Yuan & Lin]. First, we propose a general version of the Block Coordinate Descent (BCD) algorithm for the Group Lasso that employs an efficient approach for optimizing each subproblem. We show that it exhibits excellent performance when the groups are of moderate sizes. For large … Read more