An Augmented Lagrangian Approach for Sparse Principal Component Analysis

Principal component analysis (PCA) is a widely used technique for data analysis and dimension reduction with numerous applications in science and engineering. However, the standard PCA suffers from the fact that the principal components (PCs) are usually linear combinations of all the original variables, and it is thus often difficult to interpret the PCs. To … Read more

The Farkas Lemma Revisited

The Farkas Lemma is extended to simultaneous linear operator and polyhedral sublinear operator inequalities by Boolean valued analysis. CitationSobolev Institute of Mathematics, Novosibirsk, 630090 RussiaArticleDownload View PDF

About Stationarity and Regularity in Variational Analysis

Stationarity and regularity concepts for the three typical for variational analysis classes of objects — real-valued functions, collections of sets, and multifunctions — are investigated. An attempt is maid to present a classification scheme for such concepts and to show that properties introduced for objects from different classes can be treated in a similar way. … Read more

Trace Norm Regularization: Reformulations, Algorithms, and Multi-task Learning

We consider a recently proposed optimization formulation of multi-task learning based on trace norm regularized least squares. While this problem may be formulated as a semidefinite program (SDP), its size is beyond general SDP solvers. Previous solution approaches apply proximal gradient methods to solve the primal problem. We derive new primal and dual reformulations of … Read more

Reconstruction of CT Images from Parsimonious Angular Measurements via Compressed Sensing

Computed Tomography is one of the most popular diagnostic tools available to medical professionals. However, its diagnostic power comes at a cost to the patient- significant radiation exposure. The amount of radiation exposure is a function of the number of angular measurements necessary to successfully reconstruct the imaged volume. Compressed sensing on the other hand … Read more

A First-Order Smoothed Penalty Method for Compressed Sensing

We propose a first-order smoothed penalty algorithm (SPA) to solve the sparse recovery problem min{||x||_1 : Ax=b}. SPA is efficient as long as the matrix-vector product Ax and A^Ty can be computed efficiently; in particular, A need not be an orthogonal projection matrix. SPA converges to the target signal by solving a sequence of penalized … Read more

Approximating semidefinite packing problems

In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding technique for dimension reduction. Our algorithm exploits the structural similarity between semidefinite packing programs … Read more

Convergence of fixed-point continuation algorithms for matrix rank minimization

The matrix rank minimization problem has applications in many fields such as system identification, optimal control, low-dimensional embedding, etc. As this problem is NP-hard in general, its convex relaxation, the nuclear norm minimization problem, is often solved instead. Recently, Ma, Goldfarb and Chen proposed a fixed-point continuation algorithm for solving the nuclear norm minimization problem. … Read more

Rank-Sparsity Incoherence for Matrix Decomposition

Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components. Such a problem arises in a number of applications in model and system identification, and is NP-hard in general. In this … Read more

An inexact parallel splitting augmented Lagrangian method for large system of linear equations

Parallel iterative methods are power tool for solving large system of linear equations (LQs). The existing parallel computing research results are all most concentred to sparse system or others particular structure, and all most based on parallel implementing the classical relaxation methods such as Gauss-Seidel, SOR, and AOR methods e±ciently on multiprcessor systems. In this … Read more