Inexact subgradient algorithm with a non-asymptotic convergence guarantee for copositive programming problems

In this paper, we propose a subgradient algorithm with a non-asymptotic convergence guarantee to solve copositive programming problems. The subproblem to be solved at each iteration is a standard quadratic programming problem, which is NP-hard in general. However, the proposed algorithm allows this subproblem to be solved inexactly. For a prescribed accuracy $\epsilon > 0$ … Read more

A Practical Adaptive Subgame Perfect Gradient Method

We present a performant gradient method for smooth convex optimization, drawing inspiration from several recent advances in the field. Our algorithm, the Adaptive Subgame Perfect Gradient Method (ASPGM) is based on the notion of subgame perfection, attaining a dynamic strengthening of minimax optimality. At each iteration, ASPGM makes a momentum-type update, optimized dynamically based on … Read more

Convexification of a Separable Function over a Polyhedral Ground Set

In this paper, we study the set \(\mathcal{S}^\kappa = \{ (x,y)\in\mathcal{G}\times\mathbb{R}^n : y_j = x_j^\kappa , j=1,\dots,n\}\), where \(\kappa > 1\) and the ground set \(\mathcal{G}\) is a nonempty polytope contained in \( [0,1]^n\). This nonconvex set is closely related to separable standard quadratic programming and appears as a substructure in potential-based network flow problems … Read more

Optimization in Theory and Practice

Algorithms for continuous optimization problems have a rich history of design and innovation over the past several decades, in which mathematical analysis of their convergence and complexity properties plays a central role. Besides their theoretical properties, optimization algorithms are interesting also for their practical usefulness as computational tools for solving real-world problems. There are often … Read more

A Simple Adaptive Proximal Gradient Method for Nonconvex Optimization

Consider composite nonconvex optimization problems where the objective function consists of a smooth nonconvex term (with Lipschitz-continuous gradient) and a convex (possibly nonsmooth) term. Existing parameter-free methods for such problems often rely on complex multi-loop structures, require line searches, or depend on restrictive assumptions (e.g., bounded iterates). To address these limitations, we introduce a novel … Read more

Moment-sos and spectral hierarchies for polynomial optimization on the sphere and quantum de Finetti theorems

We revisit the convergence analysis of two approximation hierarchies for polynomial optimization on the unit sphere. The first one is based on the moment-sos approach and gives semidefinite bounds for which Fang and Fawzi (2021) showed an analysis in \(O(1/r^2)\) for the r-th level bound, using the polynomial kernel method. The second hierarchy was recently … Read more

A Riemannian AdaGrad-Norm Method

We propose a manifold AdaGrad-Norm method (\textsc{MAdaGrad}), which extends the norm version of AdaGrad (AdaGrad-Norm) to Riemannian optimization. In contrast to line-search schemes, which may require several exponential map computations per iteration, \textsc{MAdaGrad} requires only one. Assuming the objective function $f$ has Lipschitz continuous Riemannian gradient, we show that the method requires at most $\mathcal{O}(\varepsilon^{-2})$ … Read more

On the Convergence and Properties of a Proximal-Gradient Method on Hadamard Manifolds

In this paper, we address composite optimization problems on Hadamard manifolds, where the objective function is given by the sum of a smooth term (not necessarily convex) and a convex term (not necessarily differentiable). To solve this problem, we develop a proximal gradient method defined directly on the manifold, employing a strategy that enforces monotonicity … Read more

New insights and algorithms for optimal diagonal preconditioning

Preconditioning (scaling) is essential in many areas of mathematics, and in particular in optimization. In this work, we study the problem of finding an optimal diagonal preconditioner. We focus on minimizing two different notions of condition number: the classical, worst-case type, \(\kappa\)-condition number, and the more averaging motivated \(\omega\)-condition number. We provide affine based pseudoconvex … Read more