On the abs-polynomial expansion of piecewise smooth functions

Tom Streubel has observed that for functions in abs-normal form, generalized Taylor expansions of arbitrary order $\bd \!- \!1$ can be generated by algorithmic piecewise differentiation. Abs-normal form means that the real or vector valued function is defined by an evaluation procedure that involves the absolute value function $|\cdot|$ apart from arithmetic operations and $\bd$ … Read more

Accelerated Inexact Composite Gradient Methods for Nonconvex Spectral Optimization Problems

This paper presents two inexact composite gradient methods, one inner accelerated and another doubly accelerated, for solving a class of nonconvex spectral composite optimization problems. More specifically, the objective function for these problems is of the form f_1 + f_2 + h where f_1 and f_2 are differentiable nonconvex matrix functions with Lipschitz continuous gradients, … Read more

Convergence analysis under consistent error bounds

We introduce the notion of consistent error bound functions which provides a unifying framework for error bounds for multiple convex sets. This framework goes beyond the classical Lipschitzian and Holderian error bounds and includes logarithmic and entropic error bound found in the exponential cone. It also includes the error bounds obtainable under the theory of … Read more

Tight bounds on Lyapunov rank

The Lyapunov rank of a cone is the number of independent equations obtainable from an analogue of the complementary slackness condition in cone programming problems, and more equations are generally thought to be better. Bounding the Lyapunov rank of a proper cone in R^n from above is an open problem. Gowda and Tao gave an … Read more

Analysis of Energy Markets Modeled as Equilibrium Problems with Equilibrium Constraints

Equilibrium problems with equilibrium constraints are challenging both theoretically and computationally. However, they are suitable/adequate modeling formulations in a number of important areas, such as energy markets, transportation planning, and logistics. Typically, these problems are characterized as bilevel Nash-Cournot games. For instance, determin- ing the equilibrium price in an energy market involves top-level decisions of … Read more

Characterization of an Anomalous Behavior of a Practical Smoothing Technique

A practical smoothing method was analyzed and tested against state-of-the-art solvers for some non-smooth optimization problems in [BSS20a; BSS20b]. This method can be used to smooth the value functions and solution mappings of fully parameterized convex problems under mild conditions. In general, the smoothing of the value function lies from above the true value function … Read more

The block mutual coherence property condition for signal recovery

Compressed sensing shows that a sparse signal can stably be recovered from incomplete linear measurements. But, in practical applications, some signals have additional structure, where the nonzero elements arise in some blocks. We call such signals as block-sparse signals. In this paper, the $\ell_2/\ell_1-\alpha\ell_2$ minimization method for the stable recovery of block-sparse signals is investigated. … Read more

Proscribed normal decompositions of Euclidean Jordan algebras

Normal decomposition systems unify many results from convex matrix analysis regarding functions that are invariant with respect to a group of transformations—particularly those matrix functions that are unitarily-invariant and the affiliated permutation-invariant “spectral functions” that depend only on eigenvalues. Spectral functions extend in a natural way to Euclidean Jordan algebras, and several authors have studied … Read more

On the strong concavity of the dual function of an optimization problem

We provide three new proofs of the strong concavity of the dual function of some convex optimization problems. For problems with nonlinear constraints, we show that the the assumption of strong convexity of the objective cannot be weakened to convexity and that the assumption that the gradients of all constraints at the optimal solution are … Read more

Behavior of Limited Memory BFGS when Applied to Nonsmooth Functions and their Nesterov Smoothings

The motivation to study the behavior of limited-memory BFGS (L-BFGS) on nonsmooth optimization problems is based on two empirical observations: the widespread success of L-BFGS in solving large-scale smooth optimization problems, and the remarkable effectiveness of the full BFGS method in solving small to medium-sized nonsmooth optimization problems, based on using a gradient, not a … Read more