A multiplicative weights update algorithm for MINLP

We discuss an application of the well-known Multiplicative Weights Update (MWU) algorithm to non-convex and mixed-integer nonlinear programming. We present applications to: (a) the distance geometry problem, which arises in the positioning of mobile sensors and in protein conformation; (b) a hydro unit commitment problem arising in the energy industry, and (c) a class of … Read more

Inner Approximations of Completely Positive Reformulations of Mixed Binary Quadratic Programs: A Unified Analysis

Every quadratic programming problem with a mix of continuous and binary variables can be equivalently reformulated as a completely positive optimization problem, i.e., a linear optimization problem over the convex but computationally intractable cone of completely positive matrices. In this paper, we focus on general inner approximations of the cone of completely positive matrices on … Read more

Quantifying Double McCormick

When using the standard McCormick inequalities twice to convexify trilinear monomials, as is often the practice in modeling and software, there is a choice of which variables to group first. For the important case in which the domain is a nonnegative box, we calculate the volume of the resulting relaxation, as a function of the … Read more

Diffusion Methods for Classification with Pairwise Relationships

We define two algorithms for propagating information in classification problems with pairwise relationships. The algorithms involve contraction maps and are related to non-linear diffusion and random walks on graphs. The approach is also related to message passing and mean field methods. The algorithms we describe are guaranteed to converge on graphs with arbitrary topology. Moreover … Read more

Spectral projected gradient method for stochastic optimization

We consider the Spectral Projected Gradient method for solving constrained optimization problems with the objective function in the form of mathematical expectation. It is assumed that the feasible set is convex, closed and easy to project on. The objective function is approximated by a sequence of Sample Average Approximation functions with different sample sizes. The … Read more

Cutting Box Strategy: an algorithmic framework for improving metaheuristics for continuous global optimization

In this work, we present a new framework to increase effectiveness of metaheuristics in seeking good solutions for the general nonlinear optimization problem, called Cutting Box Strategy (CBS). CBS is based on progressive reduction of the search space through the use of intelligent multi-starts, where solutions already obtained cannot be revisited by the adopted metaheuristic. … Read more

Discrete flow pooling problems in coal supply chains

The pooling problem is a nonconvex nonlinear programming problem (NLP) with applications in the refining and petrochemical industries, but also the coal mining industry. The problem can be stated as follows: given a set of raw material suppliers (inputs) and qualities of the supplies, find a cost-minimising way of blending these raw materials in intermediate … Read more

A special case of the generalized pooling problem arising in the mining industry

Iron ore and coal are substantial contributors to Australia’s export economy. Both are blended products that are made-to-order according to customers’ desired product qualities. Mining companies have a great interest in meeting these target qualities since deviations generally result in contractually agreed penalties. This paper studies a variation of the generalized pooling problem (GPP) arising … Read more

Vanishing Price of Anarchy in Large Coordinative Nonconvex Optimization

We focus on a class of nonconvex cooperative optimization problems that involve multiple participants. We study the duality framework and provide geometric and analytic character- izations of the duality gap. The dual problem is related to a market setting in which each participant pursuits self interests at a given price of common goods. The duality … Read more

Bound-constrained polynomial optimization using only elementary calculations

We provide a monotone non increasing sequence of upper bounds $f^H_k$ ($k\ge 1$) converging to the global minimum of a polynomial $f$ on simple sets like the unit hypercube. The novelty with respect to the converging sequence of upper bounds in [J.B. Lasserre, A new look at nonnegativity on closed sets and polynomial optimization, SIAM … Read more