A refined error analysis for fixed-degree polynomial optimization over the simplex

We consider fixed-degree polynomial optimization over the simplex. This problem is well known to be NP-hard, since it contains the maximum stable set problem in combinatorial optimization as a special case. In this paper, we consider a known upper bound by taking the minimum value on a regular grid, and a known lower bound based … Read more

Equivalence and Strong Equivalence between Sparsest and Least l1-Norm Nonnegative Solutions of Linear Systems and Their Application

Many practical problems can be formulated as $\ell_0$-minimization problems with nonnegativity constraints, which seek the sparsest nonnegative solutions to underdetermined linear systems. Recent study indicates that $\ell_1$-minimization is efficient for solving some classes of $\ell_0$-minimization problems. From a mathematical point of view, however, the understanding of the relationship between $\ell_0$- and $\ell_1$-minimization remains incomplete. In … Read more

Reactive Power Management using Firefly and Spiral Optimization under Static and Dynamic Loading Conditions

Power System planning encompasses the concept of minimization of transmission losses keeping in mind the voltage stability and system reliability. Voltage profile decides the state of a system and its control is dependent on Generator source voltage, shunt/series injection, transformer taps etc. Optimal parameter setting in system level is needed for managing the available resources … Read more

A Revisit to Quadratic Programming with One Inequality Quadratic Constraint via Matrix Pencil

The quadratic programming over one inequality quadratic constraint (QP1QC) is a very special case of quadratically constrained quadratic programming (QCQP) and attracted much attention since early 1990’s. It is now understood that, under the primal Slater condition, (QP1QC) has a tight SDP relaxation (PSDP). The optimal solution to (QP1QC), if exists, can be obtained by … Read more

Trust Region Subproblem with a Fixed Number of Additional Linear Inequality Constraints has Polynomial Complexity

The trust region subproblem with a fixed number m additional linear inequality constraints, denoted by (T_m), have drawn much attention recently. The question as to whether Problem ( T_m) is in Class P or Class NP remains open. So far, the only affirmative general result is that (T_1) has an exact SOCP/SDP reformulation and thus … Read more

Application of the Moment-SOS Approach to Global Optimization of the OPF Problem

Finding a global solution to the optimal power flow (OPF) problem is difficult due to its nonconvexity. A convex relaxation in the form of semidefinite programming (SDP) has attracted much attention lately as it yields a global solution in several practical cases. However, it does not in all cases, and such cases have been documented … Read more

Copositive relaxation beats Lagrangian dual bounds in quadratically and linearly constrained QPs

We study non-convex quadratic minimization problems under (possibly non-convex) quadratic and linear constraints, and characterize both Lagrangian and Semi-Lagrangian dual bounds in terms of conic optimization. While the Lagrangian dual is equivalent to the SDP relaxation (which has been known for quite a while, although the presented form, incorporating explicitly linear constraints, seems to be … Read more

Monomial-wise Optimal Separable Underestimators for Mixed-Integer Polynomial Optimization

In this paper we introduce a new method for solving box-constrained mixed-integer polynomial problems to global optimality. The approach, a specialized branch-and-bound algorithm, is based on the computation of lower bounds provided by the minimization of separable underestimators of the polynomial objective function. The underestimators are the novelty of the approach because the standard approaches … Read more

Narrowing the difficulty gap for the Celis-Dennis-Tapia problem

We study the {\em Celis-Dennis-Tapia (CDT) problem}: minimize a non-convex quadratic function over the intersection of two ellipsoids. In contrast to the well-studied trust region problem where the feasible set is just one ellipsoid, the CDT problem is not yet fully understood. Our main objective in this paper is to narrow the difficulty gap that … Read more

A Derivative-Free Algorithm for Constrained Global Optimization based on Exact Penalty Functions

Constrained global optimization problems can be tackled by using exact penalty approaches. In a preceding paper, we proposed an exact penalty algorithm for constrained problems which combines an unconstrained global minimization technique for minimizing a non-differentiable exact penalty func- tion for given values of the penalty parameter, and an automatic updating of the penalty parameter … Read more