Fuzzy Modeling with Adaptive Simulated Annealing

A new method for data-based fuzzy system modeling is presented. The approach uses Takagi-Sugeno models and Adaptive Simulated Annealing (ASA) to achieve its goal . The problem to solve is well defined – given a training set containing a finite number of input-output pairs, construct a fuzzy system that approximates the behavior of the real … Read more

A Global Optimization Problem in Portfolio Selection

This paper deals with the issue of buy-in thresholds in portfolio optimization using the Markowitz approach. Optimal values of invested fractions calculated using, for instance, the classical minimum-risk problem can be unsatisfactory in practice because they imply that very small amounts of certain assets are purchased. Realistically, we want to impose a disjoint restriction so … Read more

Solving the Vehicle Routing Problem with Stochastic Demands using the Cross Entropy Method

An alternate formulation of the classical vehicle routing problem with stochastic demands (VRPSD)is considered. We propose a new heuristic method to solve the problem. The algorithm is a modified version of the so-called Cross-Entropy method, which has been proposed in the literature as a heuristics for deterministic combinatorial optimization problems based upon concepts of rare-event … Read more

On the Globally Concavized Filled Function Method

In this paper we present a new definition on the globally concavized filled function for the continuous global minimization problem, which was modified from that by Ge [3]. A new class of globally concavized filled functions are constructed. These functions contain two easily determinable parameters, which are not dependent on the radius of the basin … Read more

A Simplicial Branch-and-Bound Algorithm for Solving Quadratically Constrained Quadratic Programs

We propose a branch-and-bound algorithm for solving nonconvex quadratically-constrained quadratic programs. The algorithm is novel in that branching is done by partitioning the feasible region into the Cartesian product of two-dimensional triangles and rectangles. Explicit formulae for the convex and concave envelopes of bilinear functions over triangles and rectangles are derived and shown to be … Read more

Gradient-Controlled, Typical-Distance Clustering for Global Optimization

We present a stochastic global optimization method that employs a clustering technique which is based on a typical distance and a gradient test. The method aims to recover all the local minima inside a rectangular domain. A new stopping rule is used. Comparative results on a set of test functions are reported. CitationPreprint, no 4-5/2004 … Read more

An Extension of Sums of Squares Relaxations to Polynomial Optimization Problems over Symmetric Cones

This paper is based on a recent work by Kojima which extended sums of squares relaxations of polynomial optimization problems to polynomial semidefinite programs. Let ${\cal E}$ and ${\cal E}_+$ be a finite dimensional real vector space and a symmetric cone embedded in ${\cal E}$; examples of $\calE$ and $\calE_+$ include a pair of the … Read more

A comparison of complete global optimization solvers

Results are reported of testing a number of existing state of the art solvers for global constrained optimization and constraint satisfaction on a set of over 1000 test problems in up to 1000 variables. Citationsubmitted to the special issue on Global Optimization of Math. ProgrammingArticleDownload View PDF

On the globally convexized filled function method for box constrained continuous global optimization

In this paper we show that the unconstrained continuous global minimization problem can not be solved by any algorithm. So without loss of generality we consider the box constrained continuous global minimization problem. We present a new globally convexized filled function method for the problem. The definition of globally convexized filled function is adapted from … Read more