On regularized structure exploiting Quasi-Newton methods for ill-posed problems

Inverse problems are inherently ill-posed, leading standard optimization techniques to fail and necessitating the use of regularization. This paper introduces a regularized, structure-exploiting Powell-Symmetric-Broyden method under modified secant conditions for solving ill-posed inverse problems in both infinite dimensional and finite dimensional settings. Our approach integrates regularization and structure exploitation directly within the Quasi-Newton framework, leveraging … Read more

Optimal Control of Semilinear Graphon Systems

Controlling the dynamics of large-scale networks is essential for a macroscopic reduction of overall consumption and losses in the context of energy supply, finance, logistics, and mobility. We investigate the optimal control of semilinear dynamical systems on asymptotically infinite networks, using the notion of graphons. Graphons represent a limit object of a converging graph sequence … Read more

Two-Stage Distributionally Robust Optimization: Intuitive Understanding and Algorithm Development from the Primal Perspective

In this paper, we study the two-stage distributionally robust optimization (DRO) problem from the primal perspective. Unlike existing approaches, this perspective allows us to build a deeper and more intuitive understanding on DRO, to leverage classical and well established solution methods and to develop a general and fast decomposition algorithm (and its variants), and to … Read more

Distributionally Robust Optimization

Distributionally robust optimization (DRO) studies decision problems under uncertainty where the probability distribution governing the uncertain problem parameters is itself uncertain. A key component of any DRO model is its ambiguity set, that is, a family of probability distributions consistent with any available structural or statistical information. DRO seeks decisions that perform best under the … Read more

The Blessing of Strategic Customers in Personalized Pricing

We consider a feature-based personalized pricing problem in which the buyer is strategic: given the seller’s pricing policy, the buyer can augment the features that they reveal to the seller to obtain a low price for the product. We model the seller’s pricing problem as a stochastic program over an infinite-dimensional space of pricing policies … Read more

The best approximation pair problem relative to two subsets in a normed space

In the classical best approximation pair (BAP) problem, one is given two nonempty, closed, convex and disjoint subsets in a finite- or an infinite-dimensional Hilbert space, and the goal is to find a pair of points, each from each subset, which realizes the distance between the subsets. This problem, which has a long history, has … Read more

Frequency regulation with storage: On losses and profits

Low-carbon societies will need to store vast amounts of electricity to balance intermittent generation from wind and solar energy, for example, through frequency regulation. Here, we derive an analytical solution to the decision-making problem of storage operators who sell frequency regulation power to grid operators and trade electricity on day-ahead markets. Mathematically, we treat future … Read more

Solving moment and polynomial optimization problems on Sobolev spaces

Using standard tools of harmonic analysis, we state and solve the problem of moments for positive measures supported on the unit ball of a Sobolev space of multivariate periodic trigonometric functions. We describe outer and inner semidefinite approximations of the cone of Sobolev moments. They are the basic components of an infinite-dimensional moment-sums of squares … Read more

libDIPS — Discretization-Based Semi-Infinite and Bilevel Programming Solvers

We consider several hierarchical optimization programs: (generalized) semi-infinite and existence-constrained semi-infinite programs, minmax, and bilevel programs. Multiple adaptive discretization-based algorithms have been published for these program classes in recent decades. However, rigorous numerical performance comparisons between these algorithms are lacking. Indeed, if numerical comparisons are provided at all, they usually compare a small selection of … Read more

Local Convergence Analysis of an Inexact Trust-Region Method for Nonsmooth Optimization

In [R. J. Baraldi and D. P. Kouri, Mathematical Programming, (2022), pp. 1–40], we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated … Read more