The Slater condition is generic in linear conic programming

We call a property generic if it holds for almost all problem instances. For linear conic problems, it has been shown in the literature that properties like uniqueness, strict complementarity or nondegeneracy of the optimal solution are generic under the assumption that Slater’s condition is fulfilled. The possibility that Slater’s condition generically fails has not … Read more

Rate analysis of inexact dual first order methods: Application to distributed MPC for network systems

In this paper we propose two dual decomposition methods based on inexact dual gradient information for solving large-scale smooth convex optimization problems. The complicating constraints are moved into the cost using the Lagrange multipliers. The dual problem is solved by inexact first order methods based on approximate gradients and we prove sublinear rate of convergence … Read more

A Dynamic Traveling Salesman Problem with Stochastic Arc Costs

We propose a dynamic traveling salesman problem (TSP) with stochastic arc costs motivated by applications, such as dynamic vehicle routing, in which a decision’s cost is known only probabilistically beforehand but is revealed dynamically before the decision is executed. We formulate the problem as a dynamic program (DP) and compare it to static counterparts to … Read more

POST-PARETO ANALYSIS FOR MULTIOBJECTIVE PARABOLIC CONTROL SYSTEMS

In this paper is presented the problem of optimizing a functional over a Pareto control set associated with a convex multiobjective control problem in Hilbert spaces, namely parabolic system. This approach generalizes for this setting some results obtained in finite dimensions. Some examples are presented. General optimality results are obtained, and a special attention is … Read more

Data-driven Chance Constrained Stochastic Program

Chance constrained programming is an effective and convenient approach to control risk in decision making under uncertainty. However, due to unknown probability distributions of random parameters, the solution obtained from a chance constrained optimization problem can be biased. In practice, instead of knowing the true distribution of a random parameter, only a series of historical … Read more

First and second order optimality conditions for optimal control problems of state constrained integral equations

This paper deals with optimal control problems of integral equations, with initial-final and running state constraints. The order of a running state constraint is defined in the setting of integral dynamics, and we work here with constraints of arbitrary high orders. First and second-order necessary conditions of optimality are obtained, as well as second-order sufficient … Read more

A class of Fejer convergent algorithms, approximate resolvents and the Hybrid Proximal-Extragradient method

A new framework for analyzing Fejer convergent algorithms is presented. Using this framework we define a very general class of Fejer convergent algorithms and establish its convergence properties. We also introduce a new definition of approximations of resolvents which preserve some useful features of the exact resolvent, and use this concept to present an unifying … Read more

How to Solve a Semi-infinite Optimization Problem

After an introduction to main ideas of semi-infinite optimization, this article surveys recent developments in theory and numerical methods for standard and generalized semi-infinite optimization problems. Particular attention is paid to connections with mathematical programs with complementarity constraints, lower level Wolfe duality, semi-smooth approaches, as well as branch and bound techniques in adaptive convexification procedures. … Read more

Nonsmooth cone-constrained optimization with applications to semi-infinite programming

The paper is devoted to the study of general nonsmooth problems of cone-constrained optimization (or conic programming) important for various aspects of optimization theory and applications. Based on advanced constructions and techniques of variational analysis and generalized differentiation, we derive new necessary optimality conditions (in both “exact” and “fuzzy” forms) for nonsmooth conic programs, establish … Read more

Metric regularity of the sum of multifunctions and applications

In this work, we use the theory of error bounds to study of metric regularity of the sum of two multifunctions, as well as some important properties of variational systems. We use an approach based on the metric regularity of epigraphical multifunctions. Our results subsume some recent results by Durea and Strugariu Citation XLIM (UMR-CNRS … Read more