Exact Approaches for the Knapsack Problem with Setups

We consider a generalization of the knapsack problem in which items are partitioned into classes, each characterized by a fixed cost and capacity. We study three alternative Integer Linear Programming formulations. For each formulation, we design an efficient algorithm to compute the linear programming relaxation (one of which is based on Column Generation techniques). We … Read more

Improved dynamic programming and approximation results for the knapsack problem with setups

We consider the 0-1 Knapsack Problem with Setups (KPS). Items are grouped into families and if any items of a family are packed, this induces a setup cost as well as a setup resource consumption. We introduce a new dynamic programming algorithm which performs much better than a previous dynamic program and turns out to … Read more

Tight cycle relaxations for the cut polytope

We study the problem of optimizing an arbitrary weight function w’z over the metric polytope of a graph G=(V,E), a well-known relaxation of the cut polytope. We define the signed graph (G, E^-), where E^- consists of the edges of G having negative weight. We characterize the sign patterns of the weight vector w such … Read more

Numerically safe lower bounds for the Capacitated Vehicle Routing Problem

The resolution of integer programming problems is typically performed via branch-and-bound. Nodes of the branch-and-bound tree are pruned whenever the corresponding subproblem is proven not to contain a solution better than the best solution found so far. This is a key ingredient for achieving reasonable solution times. However, since subproblems are solved in floating-point arithmetic, … Read more

Exact Algorithms for the Chance-Constrained Vehicle Routing Problem

We study the chance-constrained vehicle routing problem (CCVRP), a version of the vehicle routing problem (VRP) with stochastic demands, where a limit is imposed on the probability that each vehicle’s capacity is exceeded. A distinguishing feature of our proposed methodologies is that they allow correlation between random demands, whereas nearly all existing exact methods for … Read more

Integrating cut-and-solve and semi-Lagrangean based dual ascent for the single-source capacitated facility location problem

This paper describes how the cut-and-solve framework and semi-Lagrangean based dual ascent algorithms can be integrated in two natural ways in order to solve the single source capacitated facility location problem. The first uses the cut-and-solve framework both as a heuristic and as an exact solver for the semi-Lagrangean subproblems. The other uses a semi-Lagrangean … Read more

Matroid Optimisation Problems with Nested Non-linear Monomials in the Objective Function

Recently, Buchheim and Klein suggested to study polynomial-time solvable optimisation problems with linear objective functions combined with exactly one additional quadratic monomial. They concentrated on special quadratic spanning tree or forest problems. We extend their results to general matroid optimisation problems with a set of nested monomials in the objective function. The monomials are linearised … Read more

Optimization Driven Scenario Grouping

Scenario decomposition algorithms for stochastic programs compute bounds by dualizing all nonanticipativity constraints and solving individual scenario problems independently. We develop an approach that improves upon these bounds by re-enforcing a carefully chosen subset of nonanticipativity constraints, effectively placing scenarios into ‘groups’. Specifically, we formulate an optimization problem for grouping scenarios that aims to improve … Read more

Risk Averse Shortest Path Interdiction

We consider a Stackelberg game in a network, where a leader minimizes the cost of interdicting arcs and a follower seeks the shortest distance between given origin and destination nodes under uncertain arc traveling cost. In particular, we consider a risk-averse leader, who aims to keep high probability that the follower’s traveling distance is longer … Read more

Min-max-min Robust Combinatorial Optimization Subject to Discrete Uncertainty

We consider combinatorial optimization problems with uncertain objective functions. In the min-max-min robust optimization approach, a fixed number k of feasible solutions is computed such that the respective best of them is optimal in the worst case. The idea is to calculate a set of candidate solutions in a potentially expensive preprocessing and then select … Read more