Distributionally Robust Discrete Optimization with Entropic Value-at-Risk

We study the discrete optimization problem under the distributionally robust framework. We optimize the Entropic Value-at-Risk, which is a coherent risk measure and is also known as Bernstein approximation for the chance constraint. We propose an efficient approximation algorithm to resolve the problem via solving a sequence of nominal problems. The computational results show that … Read more

Unifying semidefinite and set-copositive relaxations of binary problems and randomization techniques

A reformulation of quadratically constrained binary programs as duals of set-copositive linear optimization problems is derived using either \(\{0,1\}\)-formulations or \(\{-1,1\}\)-formulations. The latter representation allows an extension of the randomization technique by Goemans and Williamson. An application to the max-clique problem shows that the max-clique problem is equivalent to a linear program over the max-cut … Read more

Approximation Algorithms for the Incremental Knapsack Problem via Disjunctive Programming

In the \emph{incremental knapsack problem} ($\IK$), we are given a knapsack whose capacity grows weakly as a function of time. There is a time horizon of $T$ periods and the capacity of the knapsack is $B_t$ in period $t$ for $t = 1, \ldots, T$. We are also given a set $S$ of $N$ items … Read more

Finding Diverse Solutions of High Quality to Binary Integer Programs

Typical output from an optimization solver is a single optimal solution. At the same time, a set of high-quality and diverse solutions could be beneficial in a variety of contexts, for example problems involving imperfect information, or those for which the structure of high-quality solution vectors can reveal meaningful insights. In view of this, we … Read more

Optimization Methods for Disease Prevention and Epidemic Control

This paper investigates problems of disease prevention and epidemic control (DPEC), in which we optimize two sets of decisions: (i) vaccinating individuals and (ii) closing locations, given respective budgets with the goal of minimizing the expected number of infected individuals after intervention. The spread of diseases is inherently stochastic due to the uncertainty about disease … Read more

Robust Critical Node Selection by Benders Decomposition

The critical node selection problem (CNP) has important applications in telecommunication, supply chain design, and disease propagation prevention. In practice, the weights on the connections are either uncertain or hard to estimate so recently robust optimization approaches have been considered for CNP. In this article, we address very general uncertainty sets, only requiring a linear … Read more

A branch and cut algorithm for minimum spanning trees under conflict constraints

We study approaches for the exact solution of the \NP–hard minimum spanning tree problem under conflict constraints. Given a graph $G(V,E)$ and a set $C \subset E \times E$ of conflicting edge pairs, the problem consists of finding a conflict-free minimum spanning tree, i.e. feasible solutions are allowed to include at most one of the … Read more

Extended Linear Formulation for Binary Quadratic Problems

In this work we propose and test a new linearisation technique for Binary Quadratic Problems (BQP). We computationally prove that the new formulation, called Extended Linear Formulation, performs much better than the standard one in practice, despite not being stronger in terms of Linear Programming relaxation (LP). We empirically prove that this behaviour is due … Read more

A Penalized Quadratic Convex Reformulation Method for Random Quadratic Unconstrained Binary Optimization

The Quadratic Convex Reformulation (QCR) method is used to solve quadratic unconstrained binary optimization problems. In this method, the semidefinite relaxation is used to reformulate it to a convex binary quadratic program which is solved using mixed integer quadratic programming solvers. We extend this method to random quadratic unconstrained binary optimization problems. We develop a … Read more

On the Rank of Cutting-Plane Proof Systems

We introduce a natural abstraction of propositional proof systems that are based on cut- ting planes. This leads to a new class of proof systems that includes many well-known meth- ods, such as Gomory-Chvátal cuts, lift-and-project cuts, Sherali-Adams cuts, or split cuts. The rank of a proof system corresponds to the number of rounds that … Read more