An Exceptionally Difficult Binary Quadratic Optimization Problem with Symmetry: a Challenge for The Largest Unsolved QAP Instance Tai256c

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original … Read more

Branch-and-Bound versus Lift-and-Project Relaxations in Combinatorial Optimization

In this paper, we consider a theoretical framework for comparing branch-and-bound with classical lift-and-project hierarchies. We simplify our analysis of streamlining the definition of branch-and-bound. We introduce “skewed $k$-trees” which give a hierarchy of relaxations that is incomparable to that of Sherali-Adams, and we show that it is much better for some instances. We also … Read more

Affine FR : an effective facial reduction algorithm for semidefinite relaxations of combinatorial problems

We develop a new method called \emph{affine FR} for recovering Slater’s condition for semidefinite programming (SDP) relaxations of combinatorial optimization (CO) problems. Affine FR is a user-friendly method, as it is fully automatic and only requires a description of the problem. We provide a rigorous analysis of differences between affine FR and the existing methods. … Read more

Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

Conflict analysis has been successfully generalized from Boolean satisfiability (SAT) solving to mixed integer programming (MIP) solvers, but although MIP solvers operate with general linear inequalities, the conflict analysis in MIP has been limited to reasoning with the more restricted class of clausal constraint. This is in contrast to how conflict analysis is performed in … Read more

Recycling Valid Inequalities for Robust Combinatorial Optimization with Budget Uncertainty

Robust combinatorial optimization with budget uncertainty is one of the most popular approaches for integrating uncertainty into optimization problems. The existence of a compact reformulation for (mixed-integer) linear programs and positive complexity results give the impression that these problems are relatively easy to solve. However, the practical performance of the reformulation is quite poor when … Read more

On solving the MAX-SAT using sum of squares

We consider semidefinite programming (SDP) approaches for solving the maximum satisfiabilityproblem (MAX-SAT) and the weighted partial MAX-SAT. It is widely known that SDP is well-suitedto approximate the (MAX-)2-SAT. Our work shows the potential of SDP also for other satisfiabilityproblems, by being competitive with some of the best solvers in the yearly MAX-SAT competition.Our solver combines … Read more

Semi-Infinite Generalized Disjunctive and Mixed Integer Convex Programs with(out) Uncertainty

In this paper, we introduce semi-infinite generalized disjunctive programs that are defined by logical propositions along with disjunctions of sets of logical equations and infinite number of algebraic inequalities. We denote these programs by SIGDPs. For SIGDPs with linear and convex inequalities, we present new reformulations: semi-infinite mixed-binary/disjunctive linear programs and semi-infinite mixed-binary/disjunctive convex programs, … Read more

Recognition of Facets for Knapsack Polytope is DP-complete

DP  is a complexity class that is the class of all languages that are the intersection of a language in NP and a language in co-NP, as coined by Papadimitriou and Yannakakis. In this paper, we will establish that, recognizing a facet for the knapsack polytope is DP-complete, as conjectured by Hartvigsen and Zemel in … Read more