On the complexity of binary polynomial optimization over acyclic hypergraphs

In this work we advance the understanding of the fundamental limits of computation for Binary Polynomial Optimization (BPO), which is the problem of maximizing a given polynomial function over all binary points. In our main result we provide a novel class of BPO that can be solved efficiently both from a theoretical and computational perspective. … Read more

Outlier detection in time series via mixed-integer conic quadratic optimization

We consider the problem of estimating the true values of a Wiener process given noisy observations corrupted by outliers. The problem considered is closely related to the Trimmed Least Squares estimation problem, a robust estimation procedure well-studied from a statistical standpoint but poorly understood from an optimization perspective. In this paper we show how to … Read more

Integrality of Linearizations of Polynomials over Binary Variables using Additional Monomials

Polynomial optimization problems over binary variables can be expressed as integer programs using a linearization with extra monomials in addition to those arising in the given polynomial. We characterize when such a linearization yields an integral relaxation polytope, generalizing work by Del Pia and Khajavirad (SIAM Journal on Optimization, 2018) and Buchheim, Crama and Rodríguez-Heck … Read more

Multi-objective Optimization Based Algorithms for Solving Mixed Integer Linear Minimum Multiplicative Programs

We present two new algorithms for a class of single-objective non-linear optimization problems, the so-called Mixed Integer Linear minimum Multiplicative Programs (MIL-mMPs). This class of optimization problems has a desirable characteristic: a MIL-mMP can be viewed as a special case of the problem of optimization over the efficient set in multi-objective optimization. The proposed algorithms … Read more

A Polynomial-time Algorithm with Tight Error Bounds for Single-period Unit Commitment Problem

This paper proposes a Lagrangian dual based polynomial-time approximation algorithm for solving the single-period unit commitment problem, which can be formulated as a mixed integer quadratic programming problem and proven to be NP-hard. Tight theoretical bounds for the absolute errors and relative errors of the approximate solutions generated by the proposed algorithm are provided. Computational … Read more

A Strictly Contractive Peaceman-Rachford Splitting Method for the Doubly Nonnegative Relaxation of the Minimum Cut Problem

The minimum cut problem, MC, and the special case of the vertex separator problem, consists in partitioning the set of nodes of a graph G into k subsets of given sizes in order to minimize the number of edges cut after removing the k-th set. Previous work on this topic uses eigenvalue, semidefinite programming, SDP, … Read more

Single Allocation Hub Location with Heterogeneous Economies of Scale

We study the single allocation hub location problem with heterogeneous economies of scale (SAHLP-h). The SAHLP-h is a generalization of the classical single allocation hub location problem (SAHLP), in which the hub-hub connection costs are piecewise linear functions of the amounts of flow. We model the problem as an integer non-linear program, which we then … Read more

On Mixed-Integer Optimal Control with Constrained Total Variation of the Integer Control

The combinatorial integral approximation (CIA) decomposition suggests to solve mixed-integer optimal control problems (MIOCPs) by solving one continuous nonlinear control problem and one mixed-integer linear program (MILP). Unrealistic frequent switching can be avoided by adding a constraint on the total variation to the MILP. Within this work, we present a fast heuristic way to solve … Read more

A counterexample to an exact extended formulation for the single-unit commitment problem

Recently, Guan, Pan, and Zohu presented a MIP model for the thermal single- unit commitment claiming that provides an integer feasible solution for any convex cost function. In this note we provide a counterexample to this statement and we produce evidence that the perspective function is needed for this aim. CitationResearch Report 19-03, Istituto di … Read more

New MINLP Formulations for the Unit Commitment Problems with Ramping Constraints

The Unit Commitment (UC) problem in electrical power production requires to optimally operate a set of power generation units over a short time horizon (one day to a week). Operational constraints of each unit depend on its type (e.g., thermal, hydro, nuclear, …), and can be rather complex. For thermal units, typical ones concern minimum … Read more