Near-optimal Robust Bilevel Optimization

Bilevel optimization studies problems where the optimal response to a second mathematical optimization problem is integrated in the constraints. Such structure arises in a variety of decision-making problems in areas such as market equilibria, policy design or product pricing. We introduce near-optimal robustness for bilevel problems, protecting the upper-level decision-maker from bounded rationality at the … Read more

Solving Heated Oil Pipeline Problems Via Mixed Integer Nonlinear Programming Approach

It is a crucial problem how to heat oil and save running cost for crude oil transport. This paper strictly formulates such a heated oil pipeline problem as a mixed integer nonlinear programming model. Nonconvex and convex continuous relaxations of the model are proposed, which are proved to be equivalent under some suitable conditions. Meanwhile, … Read more

A Bilevel Approach for Identifying the Worst Contingencies for Nonconvex Alternating Current Power Systems

We address the bilevel optimization problem of identifying the most critical attacks to an alternating current (AC) power flow network. The upper-level binary maximization problem consists in choosing an attack that is treated as a parameter in the lower-level defender minimization problem. Instances of the lower-level global minimization problem by themselves are NP-hard due to … Read more

Optimal Design of Retailer-Prosumer Electricity Tariffs Using Bilevel Optimization

We compare various flexible tariffs that have been proposed to cost-effectively govern a prosumer’s electricity management – in particular time-of-use (TOU), critical-peak-pricing (CPP), and a real-time-pricing tariff (RTP). As the outside option, we consider a fixed-price tariff (FP) that restricts the specific characteristics of TOU, CPP, and RTP, so that the flexible tariffs are at … Read more

Visible points, the separation problem, and applications to MINLP

In this paper we introduce a technique to produce tighter cutting planes for mixed-integer non-linear programs. Usually, a cutting plane is generated to cut off a specific infeasible point. The underlying idea is to use the infeasible point to restrict the feasible region in order to obtain a tighter domain. To ensure validity, we require … Read more

Improved Penalty Algorithm for Mixed Integer PDE Constrained Optimization (MIPDECO) Problems

Optimal control problems including partial differential equation (PDE) as well as integer constraints merge the combinatorial difficulties of integer programming and the challenges related to large-scale systems resulting from discretized PDEs. So far, the Branch-and-Bound framework has been the most common solution strategy for such problems. In order to provide an alternative solution approach, especially … Read more

A Unified Approach to Mixed-Integer Optimization Problems With Logical Constraints

We propose a unified framework to address a family of classical mixed-integer optimization problems with logically constrained decision variables, including network design, facility location, unit commitment, sparse portfolio selection, binary quadratic optimization, sparse principal component analysis and sparse learning problems. These problems exhibit logical relationships between continuous and discrete variables, which are usually reformulated linearly … Read more

Strategic Network Design for Parcel Delivery with Drones under Competition

This paper studies the economic desirability of UAV parcel delivery and its e ect on e-retailer distribution network while taking into account technological limitations, government regulations, and customer behavior. We consider an e-retailer o ering multiple same day delivery services including a fast UAV service and develop a distribution network design formulation under service based competition where … Read more

Theorems of the Alternative for Conic Integer Programming

Farkas’ Lemma is a foundational result in linear programming, with implications in duality, optimality conditions, and stochastic and bilevel programming. Its generalizations are known as theorems of the alternative. There exist theorems of the alternative for integer programming and conic programming. We present theorems of the alternative for conic integer programming. We provide a nested … Read more

Solving Multiobjective Mixed Integer Convex Optimization Problems

Multiobjective mixed integer convex optimization refers to mathematical programming problems where more than one convex objective function needs to be optimized simultaneously and some of the variables are constrained to take integer values. We present a branch-and-bound method based on the use of properly defined lower bounds. We do not simply rely on convex relaxations, … Read more