Explicit Convex and Concave Envelopes through Polyhedral Subdivisions

In this paper, we derive explicit characterizations of convex and concave envelopes of several nonlinear functions over various subsets of a hyper-rectangle. These envelopes are obtained by identifying polyhedral subdivisions of the hyper-rectangle over which the envelopes can be constructed easily. In particular, we use these techniques to derive, in closed-form, the concave envelopes of … Read more

On Maximal S-free Convex Sets

Let S be a subset of integer points that satisfy the property that $conv(S) \cap Z^n = S$. Then a convex set K is called an S-free convex set if $int(K) \cap S = \emptyset$. A maximal S-free convex set is an S-free convex set that is not properly contained in any S-free convex set. … Read more

Solving the quadratic assignment problem by means of general purpose mixed integer linear programming solvers

The Quadratic Assignment Problem (QAP) can be solved by linearization, where one formulates the QAP as a mixed integer linear programming (MILP) problem. On the one hand, most of these linearization are tight, but hardly exploited within a reasonable computing time because of their size. On the other hand, Kaufman and Broeckx formulation [1] is … Read more

On mixed integer reformulations of monotonic probabilistic programming problems with discrete distributions

The paper studies large scale mixed integer reformulation approach to stochastic programming problems containing probability and quantile functions, under assumption of discreteness of the probability distribution involved. Jointly with general sample approximation technique and contemporary mixed integer programming solvers the approach gives a regular framework to solution of practical probabilistic programming problems. In the literature … Read more

Truss topology design with integer variables made easy

We propose a new look at the problem of truss topology optimization with integer or binary variables. We show that the problem can be equivalently formulated as an integer \emph{linear} semidefinite optimization problem. This makes its numerical solution much easier, compared to existing approaches. We demonstrate that one can use an off-the-shelf solver with default … Read more

Combinatorial Integral Approximation

We are interested in structures and efficient methods for mixed-integer nonlinear programs (MINLP) that arise from a first discretize, then optimize approach to time-dependent mixed-integer optimal control problems (MIOCPs). In this study we focus on combinatorial constraints, in particular on restrictions on the number of switches on a fixed time grid. We propose a novel … Read more

The Chvatal-Gomory Closure of a Strictly Convex Body

In this paper, we prove that the Chvatal-Gomory closure of a set obtained as an intersection of a strictly convex body and a rational polyhedron is a polyhedron. Thus, we generalize a result of Schrijver which shows that the Chvatal-Gomory closure of a rational polyhedron is a polyhedron. ArticleDownload View PDF

Two dimensional lattice-free cuts and asymmetric disjunctions for mixed-integer polyhedra

In this paper, we study the relationship between {\em 2D lattice-free cuts}, the family of cuts obtained by taking two-row relaxations of a mixed-integer program (MIP) and applying intersection cuts based on maximal lattice-free sets in $\R^2$, and various types of disjunctions. Recently, Li and Richard (2007) studied disjunctive cuts obtained from $t$-branch split disjunctions … Read more

Separating Doubly Nonnegative and Completely Positive Matrices

The cone of Completely Positive (CP) matrices can be used to exactly formulate a variety of NP-Hard optimization problems. A tractable relaxation for CP matrices is provided by the cone of Doubly Nonnegative (DNN) matrices; that is, matrices that are both positive semidefinite and componentwise nonnegative. A natural problem in the optimization setting is then … Read more