On polynomial time solvability of combinatorial Markov random fields

The problem of inferring Markov random fields (MRFs) with a sparsity or robustness prior can be naturally modeled as a mixed-integer program. This motivates us to study a general class of convex submodular optimization problems with indicator variables, which we show to be polynomially solvable in this paper. The key insight is that, possibly after … Read more

A note on quadratic constraints with indicator variables: Convex hull description and perspective relaxation

In this paper, we study the mixed-integer nonlinear set given by a separable quadratic constraint on continuous variables, where each continuous variable is controlled by an additional indicator. This set occurs pervasively in optimization problems with uncertainty and in machine learning. We show that optimization over this set is NP-hard. Despite this negative result, we … Read more

Explicit convex hull description of bivariate quadratic sets with indicator variables

We consider the nonconvex set \(S_n = \{(x,X,z): X = x x^T, \; x (1-z) =0,\; x \geq 0,\; z \in \{0,1\}^n\}\), which is closely related to the feasible region of several difficult nonconvex optimization problems such as the best subset selection and constrained portfolio optimization. Utilizing ideas from convex analysis and disjunctive programming, we … Read more

A Successive Linear Relaxation Method for MINLPs with Multivariate Lipschitz Continuous Nonlinearities

We present a novel method for mixed-integer optimization problems with multivariate and Lipschitz continuous nonlinearities. In particular, we do not assume that the nonlinear constraints are explicitly given but that we can only evaluate them and that we know their global Lipschitz constants. The algorithm is a successive linear relaxation method in which we alternate … Read more

Superadditive duality and convex hulls for mixed-integer conic optimization

We present an infinite family of linear valid inequalities for a mixed-integer conic program, and prove that these inequalities describe the convex hull of the feasible set when this set is bounded and described by integral data. The main element of our proof is to establish a new strong superadditive dual for mixed-integer conic programming … Read more

A copositive framework for analysis of hybrid Ising-classical algorithms

Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately searching for the ground state of Ising spin Hamiltonians. The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing … Read more

Multilinear formulations for computing Nash equilibrium of multi-player matrix games

We present multilinear and mixed-integer multilinear programs to find a Nash equilibrium in multi-player strategic-form games. We compare the formulations to common algorithms in Gambit, and conclude that a multilinear feasibility program finds a Nash equilibrium faster than any of the methods we compare it to, including the quantal response equilibrium method, which is recommended … Read more

Cutting-plane algorithm for sparse estimation of the Cox proportional-hazards model

Survival analysis is a family of statistical methods for analyzing event occurrence times. In this paper, we address the mixed-integer optimization approach to sparse estimation of the Cox proportional-hazards model for survival analysis. Specifically, we propose a high-performance cutting-plane algorithm based on reformulation of bilevel optimization for sparse estimation. This algorithm solves the upper-level problem … Read more

Recursive McCormick Linearization of Multilinear Programs

Linear programming (LP) relaxations are widely employed in exact solution methods for multilinear programs (MLP). One example is the family of Recursive McCormick Linearization (RML) strategies, where bilinear products are substituted for artificial variables, which deliver a relaxation of the original problem when introduced together with concave and convex envelopes. In this article, we introduce … Read more

A Penalty Branch-and-Bound Method for Mixed-Integer Quadratic Bilevel Problems

We propose an algorithm for solving bilevel problems with mixed-integer convex-quadratic upper level as well as convex-quadratic and continuous lower level. The method is based on a classic branch-and-bound procedure, where branching is performed on the integer constraints and on the complementarity constraints resulting from the KKT reformulation of the lower-level problem. However, instead of … Read more