Solving Highly Detailed Gas Transport MINLPs: Block Separability and Penalty Alternating Direction Methods

Detailed modeling of gas transport problems leads to nonlinear and nonconvex mixed-integer optimization or feasibility models (MINLPs) because both the incorporation of discrete controls of the network as well as accurate physical and technical modeling is required in order to achieve practical solutions. Hence, ignoring certain parts of the physics model is not valid for … Read more

Variants in Modeling Time Aspects for the Multiple Traveling Salesmen Problem with Moving Targets

The multiple traveling salesmen problem with moving targets (MT-SPMT) is a generalization of the classical traveling salesmen problem (TSP), where the targets (cities or objects) are moving over time. Additionally, for each target a visibility time window is given. The task is to find routes for several salesmen so that each target is reached exactly … Read more

Aggregation-based cutting-planes for packing and covering integer programs

In this paper, we study the strength of Chvatal-Gomory (CG) cuts and more generally aggregation cuts for packing and covering integer programs (IPs). Aggregation cuts are obtained as follows: Given an IP formulation, we first generate a single implied inequality using aggregation of the original constraints, then obtain the integer hull of the set defined … Read more

Solving the bandwidth coloring problem applying constraint and integer programming techniques

In this paper, constraint and integer programming formulations are applied to solve Bandwidth Coloring Problem (BCP) and Bandwidth Multicoloring Problem (BMCP). The problems are modeled using distance geometry (DG) approaches, which are then used to construct the constraint programming formulation. The integer programming formulation is based on a previous formulation for the related Minimum Span … Read more

A dual-ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems

In this work we present a branch-and-bound (B&B) framework for the asymmetric prize-collecting Steiner tree problem (APCSTP). Several well-known network design problems can be transformed to the APCSTP, including the Steiner tree problem (STP), prize-collecting Steiner tree problem (PCSTP), maximum-weight connected subgraph problem (MWCS) and the node-weighted Steiner tree problem (NWSTP). The main component of … Read more

An Adaptive Discretization MINLP Algorithm for Optimal Synthesis of Decentralized Energy Supply Systems

Decentralized energy supply systems (DESS) are highly integrated and complex systems designed to meet time-varying energy demands, e.g., heating, cooling, and electricity. The synthesis problem of DESS addresses combining various types of energy conversion units, choosing their sizing and operations to maximize an objective function, e.g., the net present value. In practice, investment costs and … Read more

Three ideas for a Feasibility Pump for nonconvex MINLP

We describe an implementation of the Feasibility Pump heuristic for nonconvex MINLPs. Our implementation takes advantage of three novel techniques, which we discuss here: a hierarchy of procedures for obtaining an integer solution, a generalized definition of the distance function that takes into account the nonlinear character of the problem, and the insertion of linearization … Read more

Minimization of Akaike’s Information Criterion in Linear Regression Analysis via Mixed Integer Nonlinear Program

Akaike’s information criterion (AIC) is a measure of the quality of a statistical model for a given set of data. We can determine the best statistical model for a particular data set by the minimization of the AIC. Since we need to evaluate exponentially many candidates of the model by the minimization of the AIC, … Read more

Tight cycle relaxations for the cut polytope

We study the problem of optimizing an arbitrary weight function w’z over the metric polytope of a graph G=(V,E), a well-known relaxation of the cut polytope. We define the signed graph (G, E^-), where E^- consists of the edges of G having negative weight. We characterize the sign patterns of the weight vector w such … Read more

Alternating Criteria Search: A Parallel Large Neighborhood Search Algorithm for Mixed Integer Programs

We present a parallel large neighborhood search framework for finding high quality primal solutions for generic Mixed Integer Programs (MIPs). The approach simultaneously solves a large number of sub-MIPs with the dual objective of reducing infeasibility and optimizing with respect to the original objective. Both goals are achieved by solving restricted versions of two auxiliary … Read more